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Problems

Algebra
A1. Suppose that a sequencea1; a2; : : : of positive real numbers satis�es

ak� 1 ¥
kak

a2
k � p k � 1q

for every positive integerk. Prove that a1 � a2 � � � � � an ¥ n for every n ¥ 2.
(Serbia)

A2. Determine all functionsf : Z Ñ Z with the property that

f
�
x � f pyq

�
� f

�
f pxq

�
� f pyq � 1

holds for all x; y PZ.
(Croatia)

A3. Let n be a �xed positive integer. Find the maximum possible value of
¸

1¤ r   s¤ 2n

ps � r � nqxr xs ;

where � 1 ¤ x i ¤ 1 for all i � 1; 2; : : : ; 2n.
(Austria)

A4. Find all functions f : R Ñ R satisfying the equation

f
�
x � f px � yq

�
� f pxyq � x � f px � yq � yf pxq

for all real numbersx and y.
(Albania)

A5. Let 2Z � 1 denote the set of odd integers. Find all functionsf : Z Ñ 2Z � 1 satisfying

f
�
x � f pxq � y

�
� f

�
x � f pxq � y

�
� f px � yq � f px � yq

for every x; y PZ.
(U.S.A.)

A6. Let n be a �xed integer with n ¥ 2. We say that two polynomialsP and Q with real
coe�cients are block-similar if for each i P t1; 2; : : : ; nu the sequences

Pp2015iq; Pp2015i � 1q; : : : ; Pp2015i � 2014q and

Qp2015iq; Qp2015i � 1q; : : : ; Qp2015i � 2014q

are permutations of each other.

paq Prove that there exist distinct block-similar polynomials of degreen � 1.

pbq Prove that there do not exist distinct block-similar polynomials of degree n.
(Canada)
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Combinatorics
C1. In Lineland there aren ¥ 1 towns, arranged along a road running from left to right.
Each town has aleft bulldozer(put to the left of the town and facing left) and aright bulldozer
(put to the right of the town and facing right). The sizes of the 2n bulldozers are distinct.
Every time when a right and a left bulldozer confront each other, the larger bulldozer pushes
the smaller one o� the road. On the other hand, the bulldozers are quite unprotected at their
rears; so, if a bulldozer reaches the rear-end of another one, the �rst one pushes the second one
o� the road, regardless of their sizes.

Let A and B be two towns, with B being to the right of A. We say that town A can sweep
town B away if the right bulldozer of A can move over toB pushing o� all bulldozers it meets.
Similarly, B can sweepA away if the left bulldozer ofB can move toA pushing o� all bulldozers
of all towns on its way.

Prove that there is exactly one town which cannot be swept away byany other one.
(Estonia)

C2. Let V be a �nite set of points in the plane. We say thatV is balancedif for any two
distinct points A; B P V, there exists a pointC P V such that AC � BC. We say that V is
center-free if for any distinct points A; B; C P V, there does not exist a pointP P V such that
P A � P B � P C.

(a) Show that for all n ¥ 3, there exists a balanced set consisting ofn points.

(b) For which n ¥ 3 does there exist a balanced, center-free set consisting ofn points?

(Netherlands)
C3. For a �nite set A of positive integers, we call a partition ofA into two disjoint nonempty
subsetsA1 and A2 good if the least common multiple of the elements inA1 is equal to the
greatest common divisor of the elements inA2. Determine the minimum value ofn such that
there exists a set ofn positive integers with exactly 2015 good partitions.

(Ukraine)
C4. Let n be a positive integer. Two playersA and B play a game in which they take turns
choosing positive integersk ¤ n. The rules of the game are:

piq A player cannot choose a number that has been chosen by either player on any previous
turn.

pii q A player cannot choose a number consecutive to any of those the player has already chosen
on any previous turn.

piii q The game is a draw if all numbers have been chosen; otherwise the player who cannot
choose a number anymore loses the game.

The player A takes the �rst turn. Determine the outcome of the game, assuming that both
players use optimal strategies.

(Finland)
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C5. Consider an in�nite sequencea1; a2; : : : of positive integers withai ¤ 2015 for all i ¥ 1.
Suppose that for any two distinct indicesi and j we havei � ai � j � aj .

Prove that there exist two positive integersb and N such that
�
�
�
�
�

n¸

i � m� 1

pai � bq

�
�
�
�
�

¤ 10072

whenevern ¡ m ¥ N .
(Australia)

C6. Let S be a nonempty set of positive integers. We say that a positive integer n is cleanif
it has a unique representation as a sum of an odd number of distinct elements fromS. Prove
that there exist in�nitely many positive integers that are not clean.

(U.S.A.)
C7. In a company of people some pairs are enemies. A group of people is called unsociable
if the number of members in the group is odd and at least 3, and it is possible to arrange all
its members around a round table so that every two neighbors are enemies. Given that there
are at most 2015 unsociable groups, prove that it is possible to partition the company into 11
parts so that no two enemies are in the same part.

(Russia)
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Geometry
G1. Let ABC be an acute triangle with orthocenterH . Let G be the point such that the
quadrilateral ABGH is a parallelogram. LetI be the point on the line GH such that AC
bisects HI . Suppose that the lineAC intersects the circumcircle of the triangleGCI at C
and J . Prove that IJ � AH .

(Australia)
G2. Let ABC be a triangle inscribed into a circle 
 with center O. A circle � with center A
meets the sideBC at points D and E such that D lies betweenB and E. Moreover, letF and
G be the common points of � and 
. We assume thatF lies on the arcAB of 
 not containing
C, and G lies on the arcAC of 
 not containing B. The circumcircles of the trianglesBDF
and CEG meet the sidesAB and AC again at K and L, respectively. Suppose that the lines
F K and GL are distinct and intersect atX . Prove that the points A, X , and O are collinear.

(Greece)
G3. Let ABC be a triangle with = C � 900, and let H be the foot of the altitude from C.
A point D is chosen inside the triangleCBH so that CH bisectsAD . Let P be the intersection
point of the lines BD and CH . Let ! be the semicircle with diameterBD that meets the
segmentCB at an interior point. A line through P is tangent to ! at Q. Prove that the
lines CQ and AD meet on! .

(Georgia)
G4. Let ABC be an acute triangle, and letM be the midpoint of AC. A circle ! passing
through B and M meets the sidesAB and BC again at P and Q, respectively. Let T be
the point such that the quadrilateral BP T Q is a parallelogram. Suppose thatT lies on the
circumcircle of the triangleABC . Determine all possible values ofBT {BM .

(Russia)
G5. Let ABC be a triangle with CA � CB. Let D, F , and G be the midpoints of the
sidesAB , AC, and BC, respectively. A circle � passing throughC and tangent to AB at D
meets the segmentsAF and BG at H and I , respectively. The pointsH 1 and I 1 are symmetric
to H and I about F and G, respectively. The lineH 1I 1 meets CD and F G at Q and M ,
respectively. The lineCM meets � again at P. Prove that CQ � QP.

(El Salvador)
G6. Let ABC be an acute triangle withAB ¡ AC, and let � be its circumcircle. Let H ,
M , and F be the orthocenter of the triangle, the midpoint ofBC, and the foot of the altitude
from A, respectively. Let Q and K be the two points on � that satisfy = AQH � 900 and
= QKH � 900. Prove that the circumcircles of the trianglesKQH and KF M are tangent to
each other.

(Ukraine)
G7. Let ABCD be a convex quadrilateral, and letP, Q, R, and S be points on the sides
AB , BC, CD, and DA , respectively. Let the line segmentsP R and QS meet at O. Suppose
that each of the quadrilateralsAP OS, BQOP , CROQ, and DSOR has an incircle. Prove that
the lines AC, P Q, and RS are either concurrent or parallel to each other.

(Bulgaria)
G8. A triangulation of a convex polygon � is a partitioning of � into triangles by diagonals
having no common points other than the vertices of the polygon. Wesay that a triangulation
is a Thaiangulation if all triangles in it have the same area.

Prove that any two di�erent Thaiangulations of a convex polygon � di�er by exactly two
triangles. (In other words, prove that it is possible to replace one pair of triangles in the �rst
Thaiangulation with a di�erent pair of triangles so as to obtain the second Thaiangulation.)

(Bulgaria)
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Number Theory
N1. Determine all positive integersM for which the sequencea0; a1; a2; : : :, de�ned by
a0 � 2M � 1

2 and ak� 1 � ak takufor k � 0; 1; 2; : : :, contains at least one integer term.
(Luxembourg)

N2. Let a and b be positive integers such thata!b! is a multiple of a! � b!. Prove that
3a ¥ 2b� 2.

(United Kingdom)
N3. Let m and n be positive integers such thatm ¡ n. De�ne xk � p m � kq{pn � kq for k �
1; 2; : : : ; n � 1. Prove that if all the numbersx1; x2; : : : ; xn� 1 are integers, thenx1x2 � � � xn� 1 � 1
is divisible by an odd prime.

(Austria)
N4. Suppose thata0; a1; : : : and b0; b1; : : : are two sequences of positive integers satisfying
a0; b0 ¥ 2 and

an� 1 � gcdpan ; bnq � 1; bn� 1 � lcmpan ; bnq � 1

for all n ¥ 0. Prove that the sequence (an ) is eventually periodic; in other words, there exist
integersN ¥ 0 and t ¡ 0 such that an� t � an for all n ¥ N .

(France)
N5. Determine all triples pa; b; cq of positive integers for whichab� c, bc� a, and ca� b are
powers of 2.

Explanation: A power of2 is an integer of the form2n , wheren denotes some nonnegative
integer.

(Serbia)
N6. Let Z¡ 0 denote the set of positive integers. Consider a functionf : Z¡ 0 Ñ Z¡ 0. For
any m; n P Z¡ 0 we write f npmq � f pf p: : : flooomooon

n

pmq: : :qq. Suppose thatf has the following two

properties:

piq If m; n PZ¡ 0, then
f npmq � m

n
PZ¡ 0;

pii q The set Z¡ 0 z tf pnq |n PZ¡ 0u is �nite.

Prove that the sequencef p1q � 1; f p2q � 2; f p3q � 3; : : : is periodic.

(Singapore)
N7. Let Z¡ 0 denote the set of positive integers. For any positive integerk, a function
f : Z¡ 0 Ñ Z¡ 0 is calledk-good if gcd

�
f pmq � n; f pnq � m

�
¤ k for all m � n. Find all k such

that there exists ak-good function.
(Canada)

N8. For every positive integern with prime factorization n �
± k

i � 1 p� i
i , de�ne

f pnq �
¸

i : pi ¡ 10100

� i :

That is, f pnq is the number of prime factors ofn greater than 10100, counted with multiplicity.
Find all strictly increasing functions f : Z Ñ Z such that

f
�
f paq � f pbq

�
¤ f pa � bq for all integersa and b with a ¡ b.

(Brazil)
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Solutions

Algebra

A1. Suppose that a sequencea1; a2; : : : of positive real numbers satis�es

ak� 1 ¥
kak

a2
k � p k � 1q

(1)

for every positive integerk. Prove that a1 � a2 � � � � � an ¥ n for every n ¥ 2.
(Serbia)

Solution. From the constraint (1), it can be seen that

k
ak� 1

¤
a2

k � p k � 1q
ak

� ak �
k � 1

ak
;

and so

ak ¥
k

ak� 1
�

k � 1
ak

:

Summing up the above inequality fork � 1; : : : ; m, we obtain

a1 � a2 � � � � � am ¥
�

1
a2

�
0
a1



�

�
2
a3

�
1
a2



� � � � �

�
m

am� 1
�

m � 1
am



�

m
am� 1

: (2)

Now we prove the problem statement by induction onn. The casen � 2 can be done by
applying (1) to k � 1:

a1 � a2 ¥ a1 �
1
a1

¥ 2:

For the induction step, assume that the statement is true for some n ¥ 2. If an� 1 ¥ 1, then
the induction hypothesis yields

�
a1 � � � � � an

�
� an� 1 ¥ n � 1: (3)

Otherwise, if an� 1   1 then apply (2) as

�
a1 � � � � � an

�
� an� 1 ¥

n
an� 1

� an� 1 �
n � 1
an� 1

�
�

1
an� 1

� an� 1



¡ p n � 1q � 2:

That completes the solution.

Comment 1. It can be seen easily that having equality in the statement requires a1 � a2 � 1 in the
base casen � 2, and an� 1 � 1 in (3). So the equality a1 � � � � � an � n is possible only in the trivial
casea1 � � � � � an � 1.

Comment 2. After obtaining (2), there are many ways to complete the solution. We outline three
such possibilities.

� With de�ning sn � a1 � � � � � an , the induction step can be replaced by

sn� 1 � sn � an� 1 ¥ sn �
n
sn

¥ n � 1;

because the functionx ÞÑx �
n
x

increases onrn; 8q .
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� By applying the AM{GM inequality to the numbers a1 � � � � � ak and kak� 1, we can conclude

a1 � � � � � ak � kak� 1 ¥ 2k

and sum it up for k � 1; : : : ; n � 1.

� We can derive the symmetric estimate

¸

1¤ i   j ¤ n

ai aj �
n¸

j � 2

pa1 � � � � � aj � 1qaj ¥
n¸

j � 2

pj � 1q �
npn � 1q

2

and combine it with the AM{QM inequality.
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A2. Determine all functionsf : Z Ñ Z with the property that

f
�
x � f pyq

�
� f

�
f pxq

�
� f pyq � 1 (1)

holds for all x; y PZ.
(Croatia)

Answer. There are two such functions, namely the constant functionx ÞÑ �1 and the successor
function x ÞÑx � 1.

Solution 1. It is immediately checked that both functions mentioned in the answer are as
desired.

Now let f denote any function satisfying (1) for allx; y P Z. Substituting x � 0 and
y � f p0q into (1) we learn that the number z � � f

�
f p0q

�
satis�es f pzq � � 1. So by plugging

y � z into (1) we deduce that
f px � 1q � f

�
f pxq

�
(2)

holds for all x PZ. Thereby (1) simpli�es to

f
�
x � f pyq

�
� f px � 1q � f pyq � 1: (3)

We now work towards showing thatf is linear by contemplating the di�erencef px� 1q� f pxq
for any x PZ. By applying (3) with y � x and (2) in this order, we obtain

f px � 1q � f pxq � f
�
x � f pxq

�
� 1 � f

�
f px � 1 � f pxqq

�
� 1:

Since (3) showsf
�
x � 1 � f pxq

�
� f pxq � f pxq � 1 � � 1, this simpli�es to

f px � 1q � f pxq � A ;

whereA � f p� 1q � 1 is some absolute constant.
Now a standard induction in both directions reveals thatf is indeed linear and that in fact

we havef pxq � Ax � B for all x P Z, where B � f p0q. Substituting this into (2) we obtain
that

Ax � p A � Bq � A2x � p AB � Bq

holds for all x P Z; applying this to x � 0 and x � 1 we inferA � B � AB � B and A2 � A.
The second equation leads toA � 0 or A � 1. In caseA � 1, the �rst equation gives B � 1,
meaning that f has to be the successor function. IfA � 0, then f is constant and (1) shows
that its constant value has to be� 1. Thereby the solution is complete.

Comment. After (2) and (3) have been obtained, there are several otherways to combine them so as
to obtain linearity properties of f . For instance, using (2) thrice in a row and then (3) with x � f pyq
one may deduce that

f py � 2q � f
�
f py � 1q

�
� f

�
f

�
f pyq

��
� f

�
f pyq � 1

�
� f pyq � f p0q � 1

holds for all y P Z. It follows that f behaves linearly on the even numbers and on the odd numbers
separately, and moreover that the slopes of these two linearfunctions coincide. From this point, one
may complete the solution with some straightforward case analysis.

A di�erent approach using the equations (2) and (3) will be presented in Solution 2. To show
that it is also possible to start in a completely di�erent way, we will also present a third solution that
avoids these equations entirely.
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Solution 2. We commence by deriving (2) and (3) as in the �rst solution. Now provided that f
is injective, (2) tells us that f is the successor function. Thus we may assume from now on that
f is not injective, i.e., that there are two integersa ¡ b with f paq � f pbq. A straightforward
induction using (2) in the induction step reveals that we havef pa � nq � f pb � nq for all
nonnegative integersn. Consequently, the sequence
 n � f pb � nq is periodic and thus in
particular bounded, which means that the numbers

' � min
n¥ 0


 n and  � max
n¥ 0


 n

exist.
Let us pick any integery with f pyq � ' and then an integerx ¥ a with f

�
x � f pyq

�
� ' .

Due to the de�nition of ' and (3) we have

' ¤ f px � 1q � f
�
x � f pyq

�
� f pyq � 1 � 2' � 1 ;

whence' ¥ � 1. The same reasoning applied to yields  ¤ � 1. Since' ¤  holds trivially,
it follows that ' �  � � 1, or in other words that we havef ptq � � 1 for all integerst ¥ a.

Finally, if any integer y is given, we may �nd an integerx which is so large thatx � 1 ¥ a
and x � f pyq ¥ a hold. Due to (3) and the result from the previous paragraph we get

f pyq � f px � 1q � f
�
x � f pyq

�
� 1 � p� 1q � p� 1q � 1 � � 1 :

Thereby the problem is solved.

Solution 3. Set d � f p0q. By plugging x � f pyq into (1) we obtain

f 3pyq � f pyq � d � 1 (4)

for all y P Z, where the left-hand side abbreviatesf
�
f pf pyqq

�
. When we replacex in (1) by

f pxqwe obtain f
�
f pxq � f pyq

�
� f 3pxq � f pyq � 1 and as a consequence of (4) this simpli�es to

f
�
f pxq � f pyq

�
� f pxq � f pyq � d : (5)

Now we consider the set
E � t f pxq � d | x PZu:

Given two integersa and b from E, we may pick some integersx and y with f pxq � a � d
and f pyq � b� d; now (5) tells us that f pa � bq � p a � bq � d, which means thata � b itself
exempli�es a � bPE. Thus,

E is closed under taking di�erences: (6)

Also, the de�nitions of d and E yield 0 P E. If E � t 0u, then f is a constant function
and (1) implies that the only value attained byf is indeed� 1.

So let us henceforth suppose thatE contains some number besides zero. It is known that in
this case (6) entailsE to be the set of all integer multiples of some positive integerk. Indeed,
this holds for

k � min
 
|x|

�
� x PE and x � 0

(
;

as one may verify by an argument based on division with remainder.
Thus we have

t f pxq |x PZu � t k � t � d | t PZu: (7)

Due to (5) and (7) we get
f pk � tq � k � t � d
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for all t P Z, whence in particular f pkq � k � d. So by comparing the results of substituting
y � 0 and y � k into (1) we learn that

f pz � kq � f pzq � k (8)

holds for all integersz. In plain English, this means that on any residue class modulok the
function f is linear with slope 1.

Now by (7) the set of all values attained byf is such a residue class. Hence, there exists an
absolute constantc such that f

�
f pxq

�
� f pxq � c holds for all x PZ. Thereby (1) simpli�es to

f
�
x � f pyq

�
� f pxq � f pyq � c � 1: (9)

On the other hand, considering (1) modulok we obtain d � � 1 pmod kq because of (7). So
by (7) again, f attains the value � 1.

Thus we may apply (9) to some integery with f pyq � � 1, which givesf px � 1q � f pxq � c.
So f is a linear function with slopec. Hence, (8) leads toc � 1, wherefore there is an absolute
constant d1 with f pxq � x � d1 for all x PZ. Using this for x � 0 we obtaind1 � d and �nally (4)
disclosesd � 1, meaning that f is indeed the successor function.
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A3. Let n be a �xed positive integer. Find the maximum possible value of
¸

1¤ r   s¤ 2n

ps � r � nqxr xs ;

where � 1 ¤ x i ¤ 1 for all i � 1; 2; : : : ; 2n.
(Austria)

Answer. npn � 1q.

Solution 1. Let Z be the expression to be maximized. Since this expression is linear in every
variable x i and � 1 ¤ x i ¤ 1, the maximum ofZ will be achieved whenx i � � 1 or 1. Therefore,
it su�ces to consider only the case whenx i P t� 1; 1u for all i � 1; 2; : : : ; 2n.

For i � 1; 2; : : : ; 2n, we introduce auxiliary variables

yi �
i¸

r � 1

xr �
2n¸

r � i � 1

xr :

Taking squares of both sides, we have

y2
i �

2n¸

r � 1

x2
r �

¸

r   s¤ i

2xr xs �
¸

i   r   s

2xr xs �
¸

r ¤ i   s

2xr xs

� 2n �
¸

r   s¤ i

2xr xs �
¸

i   r   s

2xr xs �
¸

r ¤ i   s

2xr xs ; (1)

where the last equality follows from the fact thatxr P t� 1; 1u. Notice that for every r   s, the
coe�cient of xr xs in (1) is 2 for eachi � 1; : : : ; r � 1; s; : : : ;2n, and this coe�cient is � 2 for each
i � r; : : : ; s � 1. This implies that the coe�cient of xr xs in

° 2n
i � 1 y2

i is 2p2n � s � r q � 2ps � r q �
4pn � s � r q. Therefore, summing (1) fori � 1; 2; : : : ; 2n yields

2n¸

i � 1

y2
i � 4n2 �

¸

1¤ r   s¤ 2n

4pn � s � r qxr xs � 4n2 � 4Z: (2)

Hence, it su�ces to �nd the minimum of the left-hand side.
Sincexr P t� 1; 1u, we see thatyi is an even integer. In addition,yi � yi � 1 � 2x i � � 2,

and so yi � 1 and yi are consecutive even integers for everyi � 2; 3; : : : ; 2n. It follows that
y2

i � 1 � y2
i ¥ 4, which implies

2n¸

i � 1

y2
i �

n¸

j � 1

�
y2

2j � 1 � y2
2j

�
¥ 4n: (3)

Combining (2) and (3), we get

4n ¤
2n¸

i � 1

y2
i � 4n2 � 4Z: (4)

Hence,Z ¤ npn � 1q.
If we set x i � 1 for odd indicesi and x i � � 1 for even indicesi , then we obtain equality

in (3) (and thus in (4)). Therefore, the maximum possible value ofZ is npn � 1q, as desired.

Comment 1. Z � npn � 1q can be achieved by several other examples. In particular,x i needs not
be � 1. For instance, setting x i � p� 1qi for all 2 ¤ i ¤ 2n, we �nd that the coe�cient of x1 in Z is 0.
Therefore, x1 can be chosen arbitrarily in the interval r� 1; 1s.

Nevertheless, if x i P t� 1; 1u for all i � 1; 2; : : : ; 2n, then the equality Z � npn � 1q holds only
when py1; y2; : : : ; y2nq � p 0; � 2; 0; � 2; : : : ; 0; � 2q or p� 2; 0; � 2; 0; : : : ; � 2; 0q. In each case, we can
reconstruct x i accordingly. The sum

° 2n
i � 1 x i in the optimal cases needs not be 0, but it must equal 0

or � 2.
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Comment 2. Several variations in setting up the auxiliary variables are possible. For instance, one
may let x2n� i � � x i and y1

i � x i � x i � 1 � � � � � x i � n� 1 for any 1 ¤ i ¤ 2n. Similarly to Solution 1,
we obtain Y :� y12

1 � y12
2 � � � � � y12

2n � 2n2 � 2Z . Then, it su�ces to show that Y ¥ 2n. If n is odd,
then eachy1

i is odd, and soy12
i ¥ 1. If n is even, then eachy1

i is even. We can check that at least one
of y1

i , y1
i � 1, y1

n� i , and y1
n� i � 1 is nonzero, so thaty12

i � y12
i � 1 � y12

n� i � y12
n� i � 1 ¥ 4; summing these up for

i � 1; 3; : : : ; n � 1 yields Y ¥ 2n.

Solution 2. We present a di�erent method of obtaining the boundZ ¤ npn � 1q. As in
the previous solution, we reduce the problem to the casex i P t� 1; 1u. For brevity, we use the
notation r2ns � t 1; 2; : : : ; 2nu.

Consider anyx1; x2; : : : ; x2n P t� 1; 1u. Let

A � t i P r2ns: x i � 1u and B � t i P r2ns: x i � � 1u:

For any subsetsX and Y of r2ns we de�ne

epX; Y q �
¸

r   s; r PX; s PY

ps � r � nq:

One may observe that

epA; Aq� epA; B q� epB; Aq� epB; B q � epr2ns; r2nsq �
¸

1¤ r   s¤ 2n

ps� r � nq � �
pn � 1qnp2n � 1q

3
:

Therefore, we have

Z � epA; Aq � epA; B q � epB; Aq � epB; B q � 2
�
epA; Aq � epB; B q

�
�

pn � 1qnp2n � 1q
3

: (5)

Thus, we need to maximizeepA; Aq � epB; B q, whereA and B form a partition of r2ns.

Due to the symmetry, we may assume that|A| � n � p and |B | � n � p, where 0¤ p ¤ n.
From now on, we �x the value ofp and �nd an upper bound for Z in terms of n and p.

Let a1   a2   � � �   an� p and b1   b2   � � �   bn� p list all elements ofA and B, respectively.
Then

epA; Aq �
¸

1¤ i   j ¤ n� p

paj � ai � nq �
n� p¸

i � 1

p2i � 1 � n � pqai �
�

n � p
2



� n (6)

and similarly

epB; B q �
n� p¸

i � 1

p2i � 1 � n � pqbi �
�

n � p
2



� n : (7)

Thus, now it su�ces to maximize the value of

M �
n� p¸

i � 1

p2i � 1 � n � pqai �
n� p¸

i � 1

p2i � 1 � n � pqbi : (8)

In order to get an upper bound, we will apply the rearrangement inequality to the se-
quencea1; a2; : : : ; an� p; b1; b2; : : : ; bn� p (which is a permutation of 1; 2; : : : ; 2n), together with
the sequence of coe�cients of these numbers in (8). The coe�cients of ai form the sequence

n � p � 1; n � p � 3; : : : ; 1 � n � p ;

and those ofbi form the sequence

n � p � 1; n � p � 3; : : : ; 1 � n � p :
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Altogether, these coe�cients are, in descending order:


 n � p � 1 � 2i , for i � 1; 2; : : : ; p;


 n � p � 1 � 2i , counted twice, fori � 1; 2; : : : ; n � p; and


 �p n � p � 1 � 2iq, for i � p; p� 1; : : : ; 1.

Thus, the rearrangement inequality yields

M ¤
p¸

i � 1

pn � p � 1 � 2iqp2n � 1 � iq

�
n� p¸

i � 1

pn � p � 1 � 2iq
�
p2n � 2 � p � 2iq � p 2n � 1 � p � 2iq

�

�
p¸

i � 1

pn � p � 1 � 2iqi : (9)

Finally, combining the information from (5), (6), (7), and (9), we obtain

Z ¤
pn � 1qnp2n � 1q

3
� 2n

��
n � p

2



�

�
n � p

2





� 2
p¸

i � 1

pn � p � 1 � 2iqp2n � 1 � 2iq � 2
n� p¸

i � 1

pn � p � 1 � 2iqp4n � 2p � 3 � 4iq;

which can be simpli�ed to

Z ¤ npn � 1q �
2
3

ppp � 1qpp � 1q:

Sincep is a nonnegative integer, this yieldsZ ¤ npn � 1q.
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A4. Find all functions f : R Ñ R satisfying the equation

f
�
x � f px � yq

�
� f pxyq � x � f px � yq � yf pxq (1)

for all real numbersx and y.
(Albania)

Answer. There are two such functions, namely the identity function andx ÞÑ2 � x.

Solution. Clearly, each of the functionsx ÞÑx and x ÞÑ2 � x satis�es (1). It su�ces now to
show that they are the only solutions to the problem.

Suppose thatf is any function satisfying (1). Then settingy � 1 in (1), we obtain

f
�
x � f px � 1q

�
� x � f px � 1q; (2)

in other words, x � f px � 1q is a �xed point of f for every x PR.

We distinguish two cases regarding the value off p0q.

Case 1. f p0q � 0.
By letting x � 0 in (1), we have

f
�
f pyq

�
� f p0q � f pyq � yf p0q:

So, if y0 is a �xed point of f , then substituting y � y0 in the above equation we gety0 � 1.
Thus, it follows from (2) that x � f px � 1q � 1 for all x PR. That is, f pxq � 2� x for all x PR.

Case 2. f p0q � 0.
By letting y � 0 and replacingx by x � 1 in (1), we obtain

f
�
x � f px � 1q � 1

�
� x � f px � 1q � 1: (3)

From (1), the substitution x � 1 yields

f
�
1 � f py � 1q

�
� f pyq � 1 � f py � 1q � yf p1q: (4)

By plugging x � � 1 into (2), we see thatf p� 1q � � 1. We then plugy � � 1 into (4) and
deduce thatf p1q � 1. Hence, (4) reduces to

f
�
1 � f py � 1q

�
� f pyq � 1 � f py � 1q � y: (5)

Accordingly, if both y0 and y0 � 1 are �xed points of f , then so isy0 � 2. Thus, it follows
from (2) and (3) that x � f px � 1q � 2 is a �xed point of f for every x PR; i.e.,

f
�
x � f px � 1q � 2

�
� x � f px � 1q � 2:

Replacingx by x � 2 simpli�es the above equation to

f
�
x � f px � 1q

�
� x � f px � 1q:

On the other hand, we sety � � 1 in (1) and get

f
�
x � f px � 1q

�
� x � f px � 1q � f pxq � f p� xq:

Therefore, f p� xq � � f pxq for all x PR.

Finally, we substitute px; yqby p� 1; � yq in (1) and use the fact that f p� 1q � � 1 to get

f
�
� 1 � f p� y � 1q

�
� f pyq � � 1 � f p� y � 1q � y:

Sincef is an odd function, the above equation becomes

� f
�
1 � f py � 1q

�
� f pyq � � 1 � f py � 1q � y:

By adding this equation to (5), we conclude thatf pyq � y for all y PR.
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A5. Let 2Z � 1 denote the set of odd integers. Find all functionsf : Z Ñ 2Z � 1 satisfying

f
�
x � f pxq � y

�
� f

�
x � f pxq � y

�
� f px � yq � f px � yq (1)

for every x; y PZ.
(U.S.A.)

Answer. Fix an odd positive integerd, an integer k, and odd integers`0; `1; : : : ; `d� 1. Then
the function de�ned as

f pmd � iq � 2kmd � ` i d pm PZ; i � 0; 1; : : : ; d � 1q

satis�es the problem requirements, and these are all such functions.

Solution. Throughout the solution, all functions are assumed to map integers to integers.

For any function g and any nonzero integert, de�ne

� tgpxq � gpx � tq � gpxq:

For any nonzero integersa and b, notice that � a� bg � � b� ag. Moreover, if � ag � 0 and
� bg � 0, then � a� bg � 0 and � at g � 0 for all nonzero integerst. We say that g is t-quasi-
periodic if � tg is a constant function (in other words, if � 1� tg � 0, or � 1g is t-periodic). In
this case, we callt a quasi-periodof g. We say that g is quasi-periodic if it is t-quasi-periodic
for some nonzero integert.

Notice that a quasi-period ofg is a period of � 1g. So if g is quasi-periodic, then its minimal
positive quasi-periodt divides all its quasi-periods.

We now assume thatf satis�es (1). First, by setting a � x � y, the problem condition can
be rewritten as

� f pxqf paq � � f pxqf
�
2x � a � f pxq

�
for all x; a PZ. (2)

Let b be an arbitrary integer and letk be an arbitrary positive integer. Applying (2) when
a is substituted by b; b� f pxq; : : : ; b� p k � 1qf pxqand summing up all these equations, we get

� kf pxqf pbq � � kf pxqf
�
2x � b� kf pxq

�
:

Notice that a similar argument works whenk is negative, so that

� M f pbq � � M f p2x � b� M q for any nonzero integerM such that f pxq |M . (3)

We now prove two lemmas.

Lemma 1. For any distinct integers x and y, the function � lcmpf pxq;f pyqqf is 2py � xq-periodic.

Proof. DenoteL � lcm
�
f pxq; f pyq

�
. Applying (3) twice, we obtain

� L f pbq � � L f p2x � b� Lq � � L f
�
2y � p b� 2py � xqq � L

�
� � L f

�
b� 2py � xq

�
:

Thus, the function � L f is 2py � xq-periodic, as required. l

Lemma 2. Let g be a function. If t and s are nonzero integers such that �ts g � 0 and
� t � tg � 0, then � tg � 0.

Proof. Assume, without loss of generality, thats is positive. Let a be an arbitrary integer.
Since � t � tg � 0, we have

� tgpaq � � tgpa � tq � � � � � � tg
�
a � p s � 1qt

�
:

The sum of theses equal numbers is � tsgpaq � 0, so each of them is zero, as required. l
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We now return to the solution.

Step 1. We prove thatf is quasi-periodic.

Let Q � lcm
�
f p0q; f p1q

�
. Applying Lemma 1, we get that the function g � � Q f is

2-periodic. In other words, the values ofg are constant on even numbers and on odd numbers
separately. Moreover, settingM � Q and x � b � 0 in (3), we getgp0q � gp� Qq. Since 0 and
� Q have di�erent parities, the value ofg at even numbers is the same as that at odd numbers.
Thus, g is constant, which means thatQ is a quasi-period off .

Step 2. Denote the minimal positive quasi-period off by T. We prove that T | f pxq for all
integersx.

Since an odd numberQ is a quasi-period off , the number T is also odd. Now suppose, to
the contrary, that there exist an odd primep, a positive integer� , and an integeru such that
p� | T but p� - f puq. Setting x � u and y � 0 in (1), we have 2f puq � f

�
u� f puq

�
� f

�
u� f puq

�
,

sop� does not divide the value off at one of the pointsu � f puqor u � f puq. Denote this point
by v.

Let L � lcm
�
f puq; f pvq

�
. Since |u � v| � f puq, from Lemma 1 we get �2f puq� L f � 0.

Hence the function � L f is 2f puq-periodic as well asT-periodic, so it is gcd
�
T;2f puq

�
-periodic,

or � gcdpT;2f puqq� L f � 0. Similarly, observe that the function � gcdpT;2f puqqf is L-periodic as
well as T-periodic, so we may conclude that �gcdpT;L q� gcdpT;2f puqqf � 0. Sincep� - L, both
gcd

�
T;2f puq

�
and gcdpT; Lq divide T{p. We thus obtain � T {p� T {pf � 0, which yields

� T {p� T {p� 1f � 0:

Since � T � 1f � 0, we can apply Lemma 2 to the function �1f , obtaining � T {p� 1f � 0.
However, this means thatf is pT{pq-quasi-periodic, contradicting the minimality of T. Our
claim is proved.

Step 3. We describe all functionsf .

Let d be the greatest common divisor of all values off . Then d is odd. By Step 2,d is a
quasi-period off , so that � df is constant. Since the value of �df is even and divisible byd,
we may denote this constant by 2dk, where k is an integer. Next, for all i � 0; 1; : : : ; d � 1,
de�ne ` i � f piq{d; notice that ` i is odd. Then

f pmd � iq � � md f piq � f piq � 2kmd � ` i d for all m PZ and i � 0; 1; : : : ; d � 1.

This shows that all functions satisfying (1) are listed in the answer.
It remains to check that all such functions indeed satisfy (1). Thisis equivalent to check-

ing (2), which is true because for every integerx, the value of f pxq is divisible by d, so that
� f pxqf is constant.

Comment. After obtaining Lemmas 1 and 2, it is possible to complete thesteps in a di�erent order.
Here we sketch an alternative approach.

For any function g and any nonzero integert, we say that g is t-pseudo-periodic if � t � t g � 0. In
this case, we callt a pseudo-periodof g, and we say that g is pseudo-periodic.

Let us �rst prove a basic property: if a function g is pseudo-periodic, then its minimal positive
pseudo-period divides all its pseudo-periods. To establish this, it su�ces to show that if t and s
are pseudo-periods ofg with t � s, then so is t � s. Indeed, suppose that � t � t g � � s� sg � 0.
Then � t � t � sg � � ts � sg � 0, so that � t � sg � 0 by Lemma 2. Taking di�erences, we obtain
� t � t � sg � � s� t � sg � 0, and thus � t � s� t � sg � 0.

Now let f satisfy the problem condition. We will show that f is pseudo-periodic. When this is
done, we will let T1 be the minimal pseudo-period off , and show that T1 divides 2f pxq for every
integer x, using arguments similar to Step 2 of the solution. Then we will come back to Step 1 by
showing that T1 is also a quasi-period off .
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First, Lemma 1 yields that � 2py� xq� lcmpf pxq;f pyqqf � 0 for every distinct integers x and y. Hence
f is pseudo-periodic with pseudo-periodL x;y � lcm

�
2py � xq; f pxq; f pyq

�
.

We now show that T1 | 2f pxq for every integer x. Suppose, to the contrary, that there exists an
integer u, a prime p, and a positive integer� such that p� | T1and p� - 2f puq. Choosev as in Step 2 and
employ Lemma 1 to obtain � 2f puq� lcmpf puq;f pvqqf � 0. However, this implies that � T 1{p� T 1{pf � 0, a
contradiction with the minimality of T1.

We now claim that � T 1� 2f � 0. Indeed, Lemma 1 implies that there exists an integers such that
� s� 2f � 0. Hence � T 1s� 2f � � T 1� T 1� 2f � 0, which allows us to conclude that � T 1� 2f � 0 by
Lemma 2. (The last two paragraphs are similar to Step 2 of the solution.)

Now, it is not di�cult to �nish the solution, though more work is needed to eliminate the factors
of 2 from the subscripts of � T 1� 2f � 0. Once this is done, we will obtain an odd quasi-period off
that divides f pxq for all integers x. Then we can complete the solution as in Step 3.
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A6. Let n be a �xed integer with n ¥ 2. We say that two polynomialsP and Q with real
coe�cients are block-similar if for each i P t1; 2; : : : ; nu the sequences

Pp2015iq; Pp2015i � 1q; : : : ; Pp2015i � 2014q and

Qp2015iq; Qp2015i � 1q; : : : ; Qp2015i � 2014q

are permutations of each other.

paq Prove that there exist distinct block-similar polynomials of degreen � 1.

pbq Prove that there do not exist distinct block-similar polynomials of degree n.
(Canada)

Solution 1. For convenience, we setk � 2015� 2` � 1.

Part ( a ). Consider the following polynomials of degreen � 1:

Ppxq �
n¹

i � 0

px � ik q and Qpxq �
n¹

i � 0

px � ik � 1q:

Since Qpxq � Ppx � 1q and Pp0q � Ppkq � Pp2kq � � � � � Ppnkq, these polynomials are
block-similar (and distinct).

Part ( b). For every polynomial F pxq and every nonnegative integerm, de�ne � F pmq �° m
i � 1 F piq; in particular, � F p0q � 0. It is well-known that for every nonnegative integerd the

sum
° m

i � 1 id is a polynomial in m of degreed � 1. Thus � F may also be regarded as a real
polynomial of degree degF � 1 (with the exception that if F � 0, then � F � 0 as well). This
allows us to consider the values of �F at all real points (where the initial de�nition does not
apply).

Assume for the sake of contradiction that there exist two distinctblock-similar polynomials
Ppxqand Qpxq of degreen. Then both polynomials � P � Qpxq and � P 2 � Q2pxqhave roots at the
points 0; k; 2k; : : : ; nk. This motivates the following lemma, where we use the special polynomial

Tpxq �
n¹

i � 0

px � ik q:

Lemma. Assume that F pxq is a nonzero polynomial such that 0; k; 2k; : : : ; nk are among the
roots of the polynomial � F pxq. Then degF ¥ n, and there exists a polynomialGpxqsuch that
degG � degF � n and F pxq � TpxqGpxq � Tpx � 1qGpx � 1q.

Proof. If degF   n, then � F pxq has at leastn � 1 roots, while its degree is less thann � 1.
Therefore, � F pxq � 0 and henceF pxq � 0, which is impossible. Thus degF ¥ n.

The lemma condition yields that � F pxq � TpxqGpxq for some polynomialGpxq such that
degG � deg � F � p n � 1q � degF � n.

Now, let us de�ne F1pxq � TpxqGpxq � Tpx � 1qGpx � 1q. Then for every positive integern
we have

� F1 pnq �
n¸

i � 1

�
TpxqGpxq � Tpx � 1qGpx � 1q

�
� TpnqGpnq � Tp0qGp0q � TpnqGpnq � � F pnq;

so the polynomial � F � F1pxq � � F pxq � � F1pxq has in�nitely many roots. This means that this
polynomial is zero, which in turn yieldsF pxq � F1pxq, as required. l



Shortlisted problems { solutions 21

First, we apply the lemma to the nonzero polynomialR1pxq � Ppxq� Qpxq. Since the degree
of R1pxqis at most n, we conclude that it is exactlyn. Moreover,R1pxq � � �

�
Tpxq � Tpx � 1q

�

for some nonzero constant� .

Our next aim is to prove that the polynomialSpxq � Ppxq � Qpxq is constant. Assume the
contrary. Then, notice that the polynomialR2pxq � Ppxq2 � Qpxq2 � R1pxqSpxqis also nonzero
and satis�es the lemma condition. Sincen   degR1 � degS � degR2 ¤ 2n, the lemma yields

R2pxq � TpxqGpxq � Tpx � 1qGpx � 1q

with some polynomialGpxq with 0   degG ¤ n.
Since the polynomialR1pxq � �

�
Tpxq � Tpx � 1q

�
divides the polynomial

R2pxq � Tpxq
�
Gpxq � Gpx � 1q

�
� Gpx � 1q

�
Tpxq � Tpx � 1q

�
;

we getR1pxq |Tpxq
�
Gpxq � Gpx � 1q

�
. On the other hand,

gcd
�
Tpxq; R1pxq

�
� gcd

�
Tpxq; Tpxq � Tpx � 1q

�
� gcd

�
Tpxq; Tpx � 1q

�
� 1;

since bothTpxqand Tpx� 1qare the products of linear polynomials, and their roots are distinct.
Thus R1pxq |Gpxq � Gpx � 1q. However, this is impossible sinceGpxq � Gpx � 1q is a nonzero
polynomial of degree less thann � degR1.

Thus, our assumption is wrong, andSpxq is a constant polynomial, saySpxq � � . Notice
that the polynomials

�
2Ppxq � �

�
{ � and

�
2Qpxq � � q{� are also block-similar and distinct.

So we may replace the initial polynomials by these ones, thus obtainingtwo block-similar
polynomials Ppxq and Qpxq with Ppxq � � Qpxq � Tpxq � Tpx � 1q. It remains to show that
this is impossible.

For every i � 1; 2: : : ; n, the valuesTpik � k � 1q and Tpik � 1q have the same sign. This
means that the valuesPpik � k � 1q � Tpik � k � 1q and Ppik q � � Tpik � 1q have opposite
signs, soPpxq has a root in each of then segmentsrik � k � 1; ik s. Since degP � n, it must
have exactly one root in each of them.

Thus, the sequencePp1q; Pp2q; : : : ; Ppkq should change sign exactly once. On the other
hand, sincePpxqand � Ppxqare block-similar, this sequence must have as many positive terms
as negative ones. Sincek � 2` � 1 is odd, this shows that the middle term of the sequence
above must be zero, soPp̀ � 1q � 0, or Tp̀ � 1q � Tp̀ q. However, this is not true since

|Tp̀ � 1q| � | ` � 1| � |`| �
n¹

i � 2

|` � 1 � ik |   | `| � |` � 1| �
n¹

i � 2

|` � ik | � | Tp̀ q|;

where the strict inequality holds becausen ¥ 2. We come to the �nal contradiction.

Comment 1. In the solution above, we used the fact that k ¡ 1 is odd. One can modify the
arguments of the last part in order to work for every (not necessarily odd) su�ciently large value of k;
namely, when k is even, one may show that the sequencePp1q; Pp2q; : : : ; Ppkq has di�erent numbers
of positive and negative terms.

On the other hand, the problem statement with k replaced by 2 is false, since the polynomials
Ppxq � Tpxq � Tpx � 1qand Qpxq � Tpx � 1q � Tpxqare block-similar in this case, due to the fact that
Pp2i � 1q � � Pp2iq � Qp2iq � � Qp2i � 1q � Tp2i � 1q for all i � 1; 2; : : : ; n. Thus, every complete
solution should use the relationk ¡ 2.

One may easily see that the conditionn ¥ 2 is also substantial, since the polynomialsx and
k � 1 � x become block-similar if we setn � 1.

It is easily seen from the solution that the result still holds if we assume that the polynomials have
degreeat most n.
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Solution 2. We provide an alternative argument for partpbq.
Assume again that there exist two distinct block-similar polynomialsPpxq and Qpxq of

degreen. Let Rpxq � Ppxq � Qpxq and Spxq � Ppxq � Qpxq. For brevity, we also denote the
segment

�
pi � 1qk � 1; ik

�
by I i , and the set

 
pi � 1qk � 1; pi � 1qk � 2; : : : ; ik

(
of all integer

points in I i by Z i .

Step 1. We prove thatRpxq has exactly one root in each segmentI i , i � 1; 2; : : : ; n, and all
these roots are simple.

Indeed, take anyi P t1; 2; : : : ; nu and choose some pointsp� ; p� PZ i so that

Ppp� q � min
xPZ i

Ppxq and Ppp� q � max
xPZ i

Ppxq:

Since the sequences of values ofP and Q in Z i are permutations of each other, we have
Rpp� q � Ppp� q � Qpp� q ¤ 0 and Rpp� q � Ppp� q � Qpp� q ¥ 0. SinceRpxq is continuous, there
exists at least one root ofRpxq betweenp� and p� | thus in I i .

So, Rpxq has at least one root in each of then disjoint segmentsI i with i � 1; 2; : : : ; n.
SinceRpxq is nonzero and its degree does not exceedn, it should have exactly one root in each
of these segments, and all these roots are simple, as required.

Step 2. We prove thatSpxq is constant.
We start with the following claim.

Claim. For every i � 1; 2; : : : ; n, the sequence of valuesS
�
pi � 1qk � 1

�
, S

�
pi � 1qk � 2

�
, . . . ,

Spik q cannot be strictly increasing.
Proof. Fix any i P t1; 2; : : : ; nu. Due to the symmetry, we may assume thatP

�
ik q ¤ Qpik q.

Choose nowp� and p� as in Step 1. If we hadPpp� q � Ppp� q, then P would be constant
on Z i , so all the elements ofZ i would be the roots ofRpxq, which is not the case. In particular,
we havep� � p� . If p� ¡ p� , then Spp� q � Ppp� q � Qpp� q ¤ Qpp� q � Ppp� q � Spp� q, so our
claim holds.

We now show that the remaining casep�   p� is impossible. Assume �rst thatPpp� q ¡
Qpp� q. Then, like in Step 1, we haveRpp� q ¤ 0, Rpp� q ¡ 0, andRpik q ¤ 0, soRpxqhas a root
in each of the intervalsrp� ; p� q and pp� ; ik s. This contradicts the result of Step 1.

We are left only with the casep�   p� and Ppp� q � Qpp� q (thus p� is the unique root of
Rpxq in I i ). If p� � ik , then the values ofRpxq on Z i z tik u are all of the same sign, which
is absurd since their sum is zero. Finally, ifp�   p�   ik , then Rpp� q and Rpik q are both
negative. This means thatRpxq should have an even number of roots inrp� ; ik s, counted with
multiplicity. This also contradicts the result of Step 1. l

In a similar way, one may prove that for everyi � 1; 2; : : : ; n, the sequenceS
�
pi � 1qk � 1

�
,

S
�
pi � 1qk � 2

�
, . . . , Spik q cannot be strictly decreasing. This means that the polynomial

� Spxq � Spxq � Spx � 1q attains at least one nonnegative value, as well as at least one non-
positive value, on the setZ i (and even onZ i z

 
pi � 1qk � 1

(
); so � S has a root in I i .

Thus � S has at leastn roots; however, its degree is less thann, so � S should be identically
zero. This shows thatSpxq is a constant, saySpxq � � .

Step 3. Notice that the polynomials Ppxq � � {2 and Qpxq � � {2 are also block-similar and
distinct. So we may replace the initial polynomials by these ones, thusreachingPpxq � � Qpxq.

Then Rpxq � 2Ppxq, soPpxqhas exactly one root in each of the segmentsI i , i � 1; 2; : : : ; n.
On the other hand,Ppxq and � Ppxq should attain the same number of positive values onZ i .
Sincek is odd, this means thatZ i contains exactly one root ofPpxq; moreover, this root should
be at the center ofZ i , becausePpxqhas the same number of positive and negative values onZ i .

Thus we have found alln roots of Ppxq, so

Ppxq � c
n¹

i � 1

px � ik � `q for somec PR z t0u,
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where` � p k � 1q{2. It remains to notice that for everyt PZ1 z t1u we have

|Pptq| � | c| � |t � ` � 1| �
n¹

i � 2

|t � ik � `|   | c| � ` �
n¹

i � 2

|1 � ik � `| � | Pp1q|;

so Pp1q � � Pptq for all t PZ1. This shows that Ppxq is not block-similar to � Ppxq. The �nal
contradiction.

Comment 2. One may merge Steps 1 and 2 in the following manner. As above, we set Rpxq �
Ppxq � Qpxq and Spxq � Ppxq � Qpxq.

We aim to prove that the polynomial Spxq � 2Ppxq � Rpxq � 2Qpxq � Rpxq is constant. Since the
degrees ofRpxq and Spxq do not exceedn, it su�ces to show that the total number of roots of Rpxq
and � Spxq � Spxq � Spx � 1q is at least 2n. For this purpose, we prove the following claim.

Claim. For every i � 1; 2; : : : ; n, either each ofR and � S has a root in I i , or R has at least two roots
in I i .

Proof. Fix any i P t1; 2; : : : ; nu. Let r P Z i be a point such that |Rpr q| � maxxPZ i |Rpxq|; we may
assume that Rpr q ¡ 0. Next, let p� ; q� P I i be some points such thatPpp� q � minxPZ i Ppxq and
Qpq� q � maxxPZ i Qpxq. Notice that Ppp� q ¤ Qpr q   Ppr qand Qpq� q ¥ Ppr q ¡ Qpr q, so r is di�erent
from p� and q� .

Without loss of generality, we may assume thatp�   r . Then we haveRpp� q � Ppp� q � Qpp� q ¤
0   Rpr q, so Rpxq has a root in rp� ; r q. If q� ¡ r , then, similarly, Rpq� q ¤ 0   Rpr q, and Rpxq also
has a root in pr; q� s; so Rpxq has two roots in I i , as required.

In the remaining case we haveq�   r ; it su�ces now to show that in this case � S has a root in I i .
SincePpp� q ¤ Qpr q and |Rpp� q| ¤ Rpr q, we haveSpp� q � 2Ppp� q � Rpp� q ¤ 2Qpr q � Rpr q � Spr q.
Similarly, we get Spq� q � 2Qpq� q � Rpq� q ¥ 2Ppr q � Rpr q � Spr q. Therefore, the sequence of values
of S on Z i is neither strictly increasing nor strictly decreasing, which shows that � S has a root
in I i . l

Comment 3. After �nding the relation Ppxq � Qpxq � �
�
Tpxq � Tpx � 1q

�
from Solution 1, one

may also follow the approach presented in Solution 2. Knowledge of the di�erence of polynomials
may simplify some steps; e.g., it is clear now thatPpxq � Qpxq has exactly one root in each of the
segmentsI i .
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Combinatorics

C1. In Lineland there aren ¥ 1 towns, arranged along a road running from left to right.
Each town has aleft bulldozer(put to the left of the town and facing left) and aright bulldozer
(put to the right of the town and facing right). The sizes of the 2n bulldozers are distinct.
Every time when a right and a left bulldozer confront each other, the larger bulldozer pushes
the smaller one o� the road. On the other hand, the bulldozers are quite unprotected at their
rears; so, if a bulldozer reaches the rear-end of another one, the �rst one pushes the second one
o� the road, regardless of their sizes.

Let A and B be two towns, with B being to the right of A. We say that town A can sweep
town B away if the right bulldozer of A can move over toB pushing o� all bulldozers it meets.
Similarly, B can sweepA away if the left bulldozer ofB can move toA pushing o� all bulldozers
of all towns on its way.

Prove that there is exactly one town which cannot be swept away byany other one.
(Estonia)

Solution 1. Let T1; T2; : : : ; Tn be the towns enumerated from left to right. Observe �rst that,
if town Ti can sweep away townTj , then Ti also can sweep away every town located betweenTi

and Tj .

We prove the problem statement by strong induction onn. The base casen � 1 is trivial.

For the induction step, we �rst observe that the left bulldozer inT1 and the right bulldozer
in Tn are completely useless, so we may forget them forever. Among theother 2n � 2 bulldozers,
we choose the largest one. Without loss of generality, it is the right bulldozer of some townTk

with k   n.
Surely, with this large bulldozerTk can sweep away all the towns to the right of it. Moreover,

none of these towns can sweepTk away; so they also cannot sweep away any town to the left
of Tk . Thus, if we remove the townsTk� 1; Tk� 2; : : : ; Tn , none of the remaining towns would
change its status of being (un)sweepable away by the others.

Applying the induction hypothesis to the remaining towns, we �nd a unique town among
T1; T2; : : : ; Tk which cannot be swept away. By the above reasons, it is also the unique such
town in the initial situation. Thus the induction step is established.

Solution 2. We start with the same enumeration and the same observation as in Solution 1.
We also denote by` i and r i the sizes of the left and the right bulldozers belonging toTi ,
respectively. One may easily see that no two townsTi and Tj with i   j can sweep each other
away, for this would yield r i ¡ ` j ¡ r i .

Clearly, there is no town which can sweepTn away from the right. Then we may choose the
leftmost town Tk which cannot be swept away from the right. One can observe now that no
town Ti with i ¡ k may sweep away some townTj with j   k, for otherwiseTi would be able
to sweepTk away as well.

Now we prove two claims, showing together thatTk is the unique town which cannot be
swept away, and thus establishing the problem statement.

Claim 1. Tk also cannot be swept away from the left.

Proof. Let Tm be some town to the left ofTk . By the choice ofTk , town Tm can be swept
away from the right by some townTp with p ¡ m. As we have already observed,p cannot be
greater than k. On the other hand,Tm cannot sweepTp away, soa fortiori it cannot sweepTk

away. l

Claim 2. Any town Tm with m � k can be swept away by some other town.
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Proof. If m   k, then Tm can be swept away from the right due to the choice ofTk . In the
remaining case we havem ¡ k.

Let Tp be a town amongTk ; Tk� 1; : : : ; Tm� 1 having the largest right bulldozer. We claim
that Tp can sweepTm away. If this is not the case, thenrp   `q for someq with p   q ¤ m. But
this means that `q is greater than all the numbersr i with k ¤ i ¤ m � 1, soTq can sweepTk

away. This contradicts the choice ofTk . l

Comment 1. One may employ the same ideas within the inductive approach.Here we sketch such
a solution.

Assume that the problem statement holds for the collection of towns T1; T2; : : : ; Tn� 1, so that there
is a unique town Ti among them which cannot be swept away by any other of them. Thus we need
to prove that in the full collection T1; T2; : : : ; Tn , exactly one of the townsTi and Tn cannot be swept
away.

If Tn cannot sweepTi away, then it remains to prove that Tn can be swept away by some other
town. This can be established as in the second paragraph of the proof of Claim 2.

If Tn can sweepTi away, then it remains to show that Tn cannot be swept away by any other town.
SinceTn can sweepTi away, it also can sweep all the townsTi ; Ti � 1; : : : ; Tn� 1 away, soTn cannot be
swept away by any of those. On the other hand, none of the remaining towns T1; T2; : : : ; Ti � 1 can
sweepTi away, so that they cannot sweepTn away as well.

Comment 2. Here we sketch yet another inductive approach. Assume thatn ¡ 1. Firstly, we �nd a
town which can be swept away by each of its neighbors (each town has two neighbors, except for the
bordering ones each of which has one); we call such town aloser. Such a town exists, because there
are n � 1 pairs of neighboring towns, and in each of them there is onlyone which can sweep the other
away; so there exists a town which is a winner in none of these pairs.

Notice that a loser can be swept away, but it cannot sweep any other town away (due to its
neighbors' protection). Now we remove a loser, andsuggestits left bulldozer to its right neighbor (if
it exists), and its right bulldozer to a left one (if it exists). Surely, a town accepts a suggestion if a
suggested bulldozer is larger than the town's one of the sameorientation.

Notice that suggested bulldozers are useless in attack (by the de�nition of a loser), but may serve
for defensive purposes. Moreover, each suggested bulldozer's protection works for the same pairs of
remaining towns as before the removal.

By the induction hypothesis, the new con�guration contains exactly one town which cannot be
swept away. The arguments above show that the initial one also satis�es this property.

Solution 3. We separately prove thatpiq there exists a town which cannot be swept away,
and that pii q there is at most one such town. We also make use of the two observations from
the previous solutions.

To prove piq, assume contrariwise that every town can be swept away. Lett1 be the leftmost
town; next, for everyk � 1; 2; : : : we inductively choosetk� 1 to be some town which can sweep
tk away. Now we claim that for everyk � 1; 2; : : : , the town tk� 1 is to the right of tk ; this leads
to the contradiction, since the number of towns is �nite.

Induction on k. The base casek � 1 is clear due to the choice oft1. Assume now that for
all j with 1 ¤ j   k, the town t j � 1 is to the right of t j . Suppose thattk� 1 is situated to the left
of tk ; then it lies betweent j and t j � 1 (possibly coinciding with t j ) for somej   k. Therefore,
tk� 1 can be swept away byt j � 1, which shows that it cannot sweept j � 1 away | so tk� 1 also
cannot sweeptk away. This contradiction proves the induction step.

To prove pii q, we also argue indirectly and choose two townsA and B neither of which can
be swept away, withA being to the left of B . Consider the largest bulldozerb between them
(taking into consideration the right bulldozer ofA and the left bulldozer ofB). Without loss
of generality, b is a left bulldozer; then it is situated in some town to the right ofA, and this
town may sweepA away since nothing prevents it from doing that. A contradiction.
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Comment 3. The Problem Selection Committee decided to reformulate this problem. The original
formulation was as follows.

Let n be a positive integer. There aren cards in a deck, enumerated from bottom to top with
numbers 1; 2; : : : ; n. For each i � 1; 2; : : : ; n, an even numberai is printed on the lower side and an
odd numberbi is printed on the upper side of thei th card. We say that thei th card opensthe j th card,
if i   j and bi   ak for every k � i � 1; i � 2; : : : ; j . Similarly, we say that the i th card closesthe
j th card, if i ¡ j and ai   bk for every k � i � 1; i � 2; : : : ; j . Prove that the deck contains exactly one
card which is neither opened nor closed by any other card.
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C2. Let V be a �nite set of points in the plane. We say thatV is balancedif for any two
distinct points A; B P V, there exists a pointC P V such that AC � BC. We say that V is
center-free if for any distinct points A; B; C P V, there does not exist a pointP P V such that
P A � P B � P C.

(a) Show that for all n ¥ 3, there exists a balanced set consisting ofn points.

(b) For which n ¥ 3 does there exist a balanced, center-free set consisting ofn points?

(Netherlands)

Answer for part ( b). All odd integers n ¥ 3.

Solution.

Part ( a ). Assume that n is odd. Consider a regularn-gon. Label the vertices of then-gon
as A1; A2; : : : ; An in counter-clockwise order, and setV � t A1; : : : ; Anu. We check that V is
balanced. For any two distinct verticesA i and A j , let k P t1; 2; : : : ; nu be the solution of
2k � i � j pmod nq. Then, sincek � i � j � k pmod nq, we haveA i Ak � A j Ak , as required.

Now assume thatn is even. Consider a regularp3n � 6q-gon, and let O be its circum-
center. Again, label its vertices asA1; : : : ; A3n� 6 in counter-clockwise order, and chooseV �
t O; A1; A2; : : : ; An� 1u. We check thatV is balanced. For any two distinct verticesA i and A j , we
always haveOAi � OAj . We now consider the verticesO and A i . First note that the triangle
OAi An{2� 1� i is equilateral for all i ¤ n

2 . Hence, ifi ¤ n
2 , then we haveOAn{2� 1� i � A i An{2� 1� i ;

otherwise, if i ¡ n
2 , then we haveOAi � n{2� 1 � A i A i � n{2� 1. This completes the proof.

An example of such a construction whenn � 10 is shown in Figure 1.

O

A1

A2

A3
A4 A5

A6

A7

A8

A9
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

A1

B1

A2

B2A3

B3

C

D

E

Figure 1 Figure 2

Comment ( a ). There are many ways to construct an example by placing equilateral triangles in a
circle. Here we present one general method.

Let O be the center of a circle and letA1; B1; : : : ; Ak ; Bk be distinct points on the circle such
that the triangle OA i B i is equilateral for eachi . Then V � t O; A1; B1; : : : ; Ak ; Bku is balanced. To
construct a set of even cardinality, put extra points C; D; E on the circle such that triangles OCD
and ODE are equilateral (see Figure 2). ThenV � t O; A1; B1; : : : ; Ak ; Bk ; C; D; E u is balanced.

Part ( b). We now show that there exists a balanced, center-free set containing n points for
all odd n ¥ 3, and that one does not exist for any evenn ¥ 3.

If n is odd, then let V be the set of vertices of a regularn-gon. We have shown in part (a)
that V is balanced. We claim thatV is also center-free. Indeed, ifP is a point such that



28 IMO 2015 Thailand

P A � P B � P C for some three distinct verticesA; B and C, then P is the circumcenter of
the n-gon, which is not contained inV.

Now suppose thatV is a balanced, center-free set of even cardinalityn. We will derive a
contradiction. For a pair of distinct points A; B P V, we say that a point C P V is associated
with the pair t A; B u if AC � BC. Since there arenpn� 1q

2 pairs of points, there exists a point
P P V which is associated with at least

Pnpn� 1q
2

L
n

T
� n

2 pairs. Note that none of thesen
2 pairs

can contain P, so that the union of thesen
2 pairs consists of at mostn � 1 points. Hence

there exist two such pairs that share a point. Let these two pairs be t A; B u and t A; Cu. Then
P A � P B � P C, which is a contradiction.

Comment ( b). We can rephrase the argument in graph theoretic terms as follows. Let V be a
balanced, center-free set consisting ofn points. For any pair of distinct vertices A; B P V and for
any C P V such that AC � BC , draw directed edgesA Ñ C and B Ñ C. Then all pairs of vertices
generate altogether at leastnpn � 1qdirected edges; since the set is center-free, these edges are distinct.
So we must obtain a graph in which any two vertices are connected in both directions. Now, each
vertex has exactly n � 1 incoming edges, which means thatn � 1 is even. Hencen is odd.
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C3. For a �nite set A of positive integers, we call a partition ofA into two disjoint nonempty
subsetsA1 and A2 good if the least common multiple of the elements inA1 is equal to the
greatest common divisor of the elements inA2. Determine the minimum value ofn such that
there exists a set ofn positive integers with exactly 2015 good partitions.

(Ukraine)

Answer. 3024.

Solution. Let A � t a1; a2; : : : ; anu, where a1   a2   � � �   an . For a �nite nonempty set B
of positive integers, denote by lcmB and gcdB the least common multiple and the greatest
common divisor of the elements inB , respectively.

Consider any good partitionpA1; A2q of A. By de�nition, lcm A1 � d � gcdA2 for some
positive integer d. For any ai P A1 and aj P A2, we haveai ¤ d ¤ aj . Therefore, we have
A1 � t a1; a2; : : : ; aku and A2 � t ak� 1; ak� 2; : : : ; anu for somek with 1 ¤ k   n. Hence, each
good partition is determined by an elementak , where 1¤ k   n. We call suchak partitioning .

It is convenient now to de�ne `k � lcmpa1; a2; : : : ; akq and gk � gcdpak� 1; ak� 2; : : : ; anq for
1 ¤ k ¤ n � 1. Soak is partitioning exactly when `k � gk .

We proceed by proving some properties of partitioning elements, using the following claim.

Claim. If ak� 1 and ak are partitioning where 2¤ k ¤ n � 1, then gk� 1 � gk � ak .

Proof. Assume that ak� 1 and ak are partitioning. Since `k� 1 � gk� 1, we have `k� 1 | ak .
Therefore,gk � `k � lcmp̀ k� 1; akq � ak , and gk� 1 � gcdpak ; gkq � ak , as desired. l

Property 1. For every k � 2; 3; : : : ; n � 2, at least one ofak� 1; ak , and ak� 1 is not partitioning.

Proof. Suppose, to the contrary, that all three numbersak� 1, ak , and ak� 1 are partitioning. The
claim yields that ak� 1 � gk � ak , a contradiction. l

Property 2. The elementsa1 and a2 cannot be simultaneously partitioning. Also,an� 2 and
an� 1 cannot be simultaneously partitioning

Proof. Assume that a1 and a2 are partitioning. By the claim, it follows that a2 � g1 � `1 �
lcmpa1q � a1, a contradiction.

Similarly, assume thatan� 2 and an� 1 are partitioning. The claim yields that an� 1 � gn� 1 �
gcdpanq � an , a contradiction. l

Now let A be an n-element set with exactly 2015 good partitions. Clearly, we have
n ¥ 5. Using Property 2, we �nd that there is at most one partitioning element in each
of t a1; a2u and t an� 2; an� 1u. By Property 1, there are at least

X
n� 5

3

\
non-partitioning elements

in t a3; a4; : : : ; an� 3u. Therefore, there are at mostpn � 1q � 2 �
X

n� 5
3

\
�

P2pn� 2q
3

T
partitioning

elements inA. Thus,
P2pn� 2q

3

T
¥ 2015, which implies thatn ¥ 3024.

Finally, we show that there exists a set of 3024 positive integers withexactly 2015 parti-
tioning elements. Indeed, in the setA � t 2 � 6i ; 3 � 6i ; 6i � 1 | 0 ¤ i ¤ 1007u, each element of the
form 3 � 6i or 6i , except 61008, is partitioning.

Therefore, the minimum possible value ofn is 3024.

Comment. Here we will work out the general case when 2015 is replaced byan arbitrary positive
integer m. Note that the bound

P2pn� 2q
3

T
¥ m obtained in the solution is, in fact, true for any positive

integers m and n. Using this bound, one can �nd that n ¥
P3m

2

T
� 1.

To show that the bound is sharp, one constructs a set of
P3m

2

T
� 1 elements with exactly m good

partitions. Indeed, the minimum is attained on the set t 6i ; 2 � 6i ; 3 � 6i | 0 ¤ i ¤ t � 1u Y t 6t u for every
even m � 2t, and t 2 � 6i ; 3 � 6i ; 6i � 1 | 0 ¤ i ¤ t � 1u for every odd m � 2t � 1.
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C4. Let n be a positive integer. Two playersA and B play a game in which they take turns
choosing positive integersk ¤ n. The rules of the game are:

piq A player cannot choose a number that has been chosen by either player on any previous
turn.

pii q A player cannot choose a number consecutive to any of those the player has already chosen
on any previous turn.

piii q The game is a draw if all numbers have been chosen; otherwise the player who cannot
choose a number anymore loses the game.

The player A takes the �rst turn. Determine the outcome of the game, assuming that both
players use optimal strategies.

(Finland)

Answer. The game ends in a draw whenn � 1; 2; 4; 6; otherwiseB wins.

Solution. For brevity, we denote byrns the set t 1; 2; : : : ; nu.
Firstly, we show that B wins whenevern � 1; 2; 4; 6. For this purpose, we provide a strategy

which guarantees thatB can always make a move afterA's move, and also guarantees that the
game does not end in a draw.

We begin with an important observation.

Lemma. Suppose thatB 's �rst pick is n and that A has made thekth move wherek ¥ 2. Then
B can also make thekth move.

Proof. Let S be the set of the �rst k numbers chosen byA. SinceS does not contain consecutive
integers, we see that the setrns zS consists ofk \contiguous components" if 1P S, and k � 1
components otherwise. SinceB has chosen onlyk � 1 numbers, there is at least one component
of rns zS consisting of numbers not yet picked byB. Hence,B can choose a number from this
component. l

We will now describe a winning strategy forB , when n � 1; 2; 4; 6. By symmetry, we may
assume thatA's �rst choice is a number not exceedingn� 1

2 . So B can pick the numbern in
B 's �rst turn. We now consider two cases.

Case 1. n is odd andn ¥ 3. The only way the game ends in a draw is thatA eventually picks
all the odd numbers from the setrns. However,B has already chosenn, so this cannot happen.
Thus B can continue to apply the lemma untilA cannot make a move.

Case 2. n is even andn ¥ 8. Since B has pickedn, the game is a draw only ifA can
eventually choose all the odd numbers from the setrn � 1s: So B picks a number from the set
t 1; 3; 5; : : : ; n � 3u not already chosen byA, on B 's second move. This is possible since the set
consists of n� 2

2 ¥ 3 numbers andA has chosen only 2 numbers. HereafterB can apply the
lemma until A cannot make a move.

Hence, in both casesA loses.

We are left with the casesn � 1; 2; 4; 6. The game is trivially a draw whenn � 1; 2. When
n � 4, A has to �rst pick 1 to avoid losing. Similarly, B has to choose 4 as well. It then follows
that the game ends in a draw.

When n � 6, B gets at least a draw by the lemma or by using a mirror strategy. On the
other hand, A may also get at least a draw in the following way. In the �rst turn,A chooses 1.
After B 's response by a numberb, A �nds a neighbor c of b which di�ers from 1 and 2, and
reservesc for A's third move. Now, clearlyA can make the second move by choosing a number
di�erent from 1 ; 2; c � 1; c; c� 1. ThereforeA will not lose.
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Comment 1. We present some explicit winning strategies forB .

We start with the case n is odd andn ¥ 3. B starts by picking n in the �rst turn. On the kth move
for k ¥ 2, B chooses the number exactly 1 less thanA's kth pick. The only special case is whenA's
kth choice is 1. In this situation, A's �rst pick was a number a ¡ 1 and B can respond by choosing
a � 1 on the kth move instead.

We now give an alternative winning strategy in the casen is even andn ¥ 8. We �rst present a
winning strategy for the case whenA's �rst pick is 1. We consider two cases depending onA's second
move.

Case 1. A's second pick is3. Then B choosesn � 3 on the second move. On thekth move, B chooses
the number exactly 1 less thanA's kth pick except that B chooses 2 ifA's kth pick is n � 2 or n � 1.

Case 2. A's second pick isa ¡ 3. Then B choosesa � 2 on the second move. Afterwards on the
kth move, B picks the number exactly 1 less thanA's kth pick.

One may easily see that this strategy guaranteesB 's victory, when A's �rst pick is 1.

The following claim shows how to extend the strategy to the general case.

Claim. Assume that B has an explicit strategy leading to a victory after A picks 1 on the �rst move.
Then B also has an explicit strategy leading to a victory after any �rst moves ofA.

Proof. Let S be an optimal strategy of B after A picks 1 on the �rst move. Assume that A picks some
number a ¡ 1 on this move; we show howB can make use ofS in order to win in this case.

In parallel to the real play, B starts an imaginary play. The positions in these plays di�er by

ipping the segment r1; as; so, if a player chooses some numberx in the real play, then the same player
chooses a numberx or a � 1 � x in the imaginary play, depending on whetherx ¡ a or x ¤ a. Thus
A's �rst pick in the imaginary play is 1.

Clearly, a number is chosen in the real play exactly if the corresponding number is chosen in the
imaginary one. Next, if an unchosen number is neighboring toone chosen byA in the imaginary play,
then the corresponding number also has this property in the real play, so A also cannot choose it.
One can easily see that a similar statement with real and imaginary plays interchanged holds forB
instead of A.

Thus, when A makes some move in the real play,B may imagine the corresponding legal move in
the imaginary one. Then B chooses the response according toS in the imaginary game and makes
the corresponding legal move in the real one. Acting so,B wins the imaginary game, thusB will also
win the real one. l

Hence,B has a winning strategy for all evenn greater or equal to 8.

Notice that the claim can also be used to simplify the argument when n is odd.

Comment 2. One may also employ symmetry whenn is odd. In particular, B could use a mirror
strategy. However, additional ideas are required to modifythe strategy after A picks n� 1

2 .
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C5. Consider an in�nite sequencea1; a2; : : : of positive integers withai ¤ 2015 for all i ¥ 1.
Suppose that for any two distinct indicesi and j we havei � ai � j � aj .

Prove that there exist two positive integersb and N such that

�
�
�
�
�

n¸

i � m� 1

pai � bq

�
�
�
�
�

¤ 10072

whenevern ¡ m ¥ N .
(Australia)

Solution 1. We visualize the set of positive integers as a sequence of points. Foreachn we
draw an arrow emerging fromn that points to n � an ; so thelengthof this arrow is an . Due to
the condition that m � am � n � an for m � n, each positive integer receives at most one arrow.
There are some positive integers, such as 1, that receive no arrows; these will be referred to as
starting points in the sequel. When one starts at any of the starting points and keeps following
the arrows, one is led to an in�nite path, called itsray, that visits a strictly increasing sequence
of positive integers. Since the length of any arrow is at most 2015, such a ray, say with starting
point s, meets every interval of the formrn; n � 2014s with n ¥ s at least once.

Suppose for the sake of contradiction that there would be at least2016 starting points.
Then we could take an integern that is larger than the �rst 2016 starting points. But now the
interval rn; n � 2014smust be met by at least 2016 rays in distinct points, which is absurd. We
have thereby shown that the numberb of starting points satis�es 1¤ b ¤ 2015. LetN denote
any integer that is larger than all starting points. We contend thatb and N are as required.

To see this, let any two integersm and n with n ¡ m ¥ N be given. The sum
° n

i � m� 1 ai

gives the total length of the arrows emerging fromm � 1; : : : ; n. Taken together, these arrows
form b subpaths of our rays, some of which may be empty. Now on each raywe look at
the �rst number that is larger than m; let x1; : : : ; xb denote these numbers, and lety1; : : : ; yb

enumerate in corresponding order the numbers de�ned similarly withrespect ton. Then the
list of di�erences y1 � x1; : : : ; yb � xb consists of the lengths of these paths and possibly some
zeros corresponding to empty paths. Consequently, we obtain

n¸

i � m� 1

ai �
b¸

j � 1

pyj � x j q;

whence
n¸

i � m� 1

pai � bq �
b¸

j � 1

pyj � nq �
b¸

j � 1

px j � mq:

Now each of theb rays meets the intervalrm � 1; m � 2015s at some point and thusx1 �
m; : : : ; xb � m are b distinct members of the sett 1; 2; : : : ; 2015u. Moreover, sincem � 1 is not a
starting point, it must belong to some ray; so 1 has to appear amongthese numbers, wherefore

1 �
b� 1¸

j � 1

pj � 1q ¤
b¸

j � 1

px j � mq ¤ 1 �
b� 1¸

j � 1

p2016� b� j q:

The same argument applied ton and y1; : : : ; yb yields

1 �
b� 1¸

j � 1

pj � 1q ¤
b¸

j � 1

pyj � nq ¤ 1 �
b� 1¸

j � 1

p2016� b� j q:
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So altogether we get
�
�
�
�
�

n¸

i � m� 1

pai � bq

�
�
�
�
�

¤
b� 1¸

j � 1

�
p2016� b� j q � p j � 1q

�
� p b� 1qp2015� bq

¤
�

pb� 1q � p 2015� bq
2


 2

� 10072 ;

as desired.

Solution 2. Set sn � n � an for all positive integersn. By our assumptions, we have

n � 1 ¤ sn ¤ n � 2015

for all n P Z¡ 0. The members of the sequences1; s2; : : : are distinct. We shall investigate the
set

M � Z¡ 0 z ts1; s2; : : :u:

Claim. At most 2015 numbers belong toM .

Proof. Otherwise let m1   m2   � � �   m2016 be any 2016 distinct elements fromM . For
n � m2016 we have

t s1; : : : ; snu Y tm1; : : : ; m2016u „ t 1; 2; : : : ; n � 2015u;

where on the left-hand side we have a disjoint union containing altogether n � 2016 elements.
But the set on the right-hand side has onlyn � 2015 elements. This contradiction proves our
claim. l

Now we work towards proving that the positive integersb � | M | and N � maxpM q are as
required. Recall that we have just shownb¤ 2015.

Let us consider any integerr ¥ N . As in the proof of the above claim, we see that

B r � M Y t s1; : : : ; sr u (1)

is a subset ofr1; r � 2015sXZ with precisely b� r elements. Due to the de�nitions ofM and N ,
we also knowr1; r � 1s X Z „ B r . It follows that there is a set Cr „ t 1; 2; : : : ; 2014u with
|Cr | � b� 1 and

B r �
�
r1; r � 1s X Z

�
Y

 
r � 1 � x

�
� x PCr

(
: (2)

For any �nite set of integersJ we denote the sum of its elements by
°

J . Now the equations (1)
and (2) give rise to two ways of computing

°
B r and the comparison of both methods leads to

¸
M �

r¸

i � 1

si �
r¸

i � 1

i � bpr � 1q �
¸

Cr ;

or in other words to
¸

M �
r¸

i � 1

pai � bq � b�
¸

Cr : (3)

After this preparation, we consider any two integersm and n with n ¡ m ¥ N . Plugging
r � n and r � m into (3) and subtracting the estimates that result, we deduce

n¸

i � m� 1

pai � bq �
¸

Cn �
¸

Cm :
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SinceCn and Cm are subsets oft 1; 2; : : : ; 2014u with |Cn | � | Cm | � b � 1, it is clear that the
absolute value of the right-hand side of the above inequality attainsits largest possible value if
either Cm � t 1; 2; : : : ; b� 1u and Cn � t 2016� b; : : : ;2014u, or the other way around. In these
two cases we have �

�
�
¸

Cn �
¸

Cm

�
�
� � p b� 1qp2015� bq;

so in the general case we �nd
�
�
�
�
�

n¸

i � m� 1

pai � bq

�
�
�
�
�

¤ pb� 1qp2015� bq ¤
�

pb� 1q � p 2015� bq
2


 2

� 10072 ;

as desired.

Comment. The sets Cn may be visualized by means of the following process: Start with an empty
blackboard. For n ¥ 1, the following happens during thenth step. The number an gets written on
the blackboard, then all numbers currently on the blackboard are decreased by 1, and �nally all zeros
that have arisen get swept away.

It is not hard to see that the numbers present on the blackboard after n steps are distinct and
form the set Cn . Moreover, it is possible to complete a solution based on this idea.
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C6. Let S be a nonempty set of positive integers. We say that a positive integer n is cleanif
it has a unique representation as a sum of an odd number of distinct elements fromS. Prove
that there exist in�nitely many positive integers that are not clean.

(U.S.A.)

Solution 1. De�ne an odd (respectively,even) representationof n to be a representation ofn
as a sum of an odd (respectively, even) number of distinct elementsof S. Let Z¡ 0 denote the
set of all positive integers.

Suppose, to the contrary, that there exist only �nitely many positive integers that are not
clean. Therefore, there exists a positive integerN such that every integern ¡ N has exactly
one odd representation.

Clearly, S is in�nite. We now claim the following properties of odd and even representations.

Property 1. Any positive integer n has at most one odd and at most one even representation.
Proof. We �rst show that every integer n has at most one even representation. SinceS is in�nite,
there existsx PS such that x ¡ maxt n; N u. Then, the numbern � x must be clean, andx does
not appear in any even representation ofn. If n has more than one even representation, then
we obtain two distinct odd representations ofn � x by adding x to the even representations
of n, which is impossible. Therefore,n can have at most one even representation.

Similarly, there exist two distinct elementsy; z P S such that y; z ¡ maxt n; N u. If n has
more than one odd representation, then we obtain two distinct oddrepresentations ofn � y � z
by adding y and z to the odd representations ofn. This is again a contradiction. l

Property 2. Fix s P S. Suppose that a numbern ¡ N has no even representation. Then
n � 2as has an even representation containings for all integersa ¥ 1.
Proof. It is su�cient to prove the following statement: If n has no even representation withouts,
then n� 2s has an even representation containings (and hence no even representation withouts
by Property 1).

Notice that the odd representation ofn � s does not contains; otherwise, we have an even
representation ofn without s. Then, adding s to this odd representation ofn � s, we get that
n � 2s has an even representation containings, as desired. l

Property 3. Every su�ciently large integer has an even representation.
Proof. Fix any s P S, and let r be an arbitrary element in t 1; 2; : : : ; 2su. Then, Property 2
implies that the set Zr � t r � 2as: a ¥ 0u contains at most one number exceedingN with
no even representation. Therefore,Zr contains �nitely many positive integers with no even
representation, and so doesZ¡ 0 �

” 2s
r � 1 Zr . l

In view of Properties 1 and 3, we may assume thatN is chosen such that everyn ¡ N has
exactly one odd and exactly one even representation. In particular, each elements ¡ N of S
has an even representation.

Property 4. For any s; t PS with N   s   t, the even representation oft contains s.
Proof. Suppose the contrary. Then,s � t has at least two odd representations: one obtained by
adding s to the even representation oft and one obtained by addingt to the even representation
of s. Since the latter does not contains, these two odd representations ofs � t are distinct, a
contradiction. l

Let s1   s2   � � � be all the elements ofS, and set � n �
° n

i � 1 si for each nonnegative
integer n. Fix an integer k such that sk ¡ N . Then, Property 4 implies that for everyi ¡ k
the even representation ofsi contains all the numberssk ; sk� 1; : : : ; si � 1. Therefore,

si � sk � sk� 1 � � � � � si � 1 � Ri � � i � 1 � � k� 1 � Ri ; (1)

whereRi is a sum of some ofs1; : : : ; sk� 1. In particular, 0 ¤ Ri ¤ s1 � � � � � sk� 1 � � k� 1.
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Let j 0 be an integer satisfyingj 0 ¡ k and � j 0 ¡ 2� k� 1. Then (1) shows that, for everyj ¡ j 0,

sj � 1 ¥ � j � � k� 1 ¡ � j {2: (2)

Next, let p ¡ j 0 be an index such thatRp � mini ¡ j 0 Ri . Then,

sp� 1 � sk � sk� 1 � � � � � sp � Rp� 1 � p sp � Rpq � sp � Rp� 1 ¥ 2sp:

Therefore, there is no element ofS larger than sp but smaller than 2sp. It follows that the
even representation� of 2sp does not contain any element larger thansp. On the other hand,
inequality (2) yields 2sp ¡ s1 � � � � � sp� 1, so � must contain a term larger thansp� 1. Thus,
it must contain sp. After removing sp from � , we have that sp has an odd representation not
containing sp, which contradicts Property 1 sincesp itself also forms an odd representation
of sp.

Solution 2. We will also use Property 1 from Solution 1.
We �rst de�ne some terminology and notations used in this solution. Let Z¥ 0 denote the set

of all nonnegative integers. All sums mentioned are regarded as sums of distinct elements ofS.
Moreover, a sum is calledevenor odddepending on the parity of the number of terms in it. All
closed or open intervals refer to sets of all integers inside them, e.g., ra; bs � t x PZ : a ¤ x ¤ bu.

Again, let s1   s2   � � � be all elements ofS, and denote� n �
° n

i � 1 si for each positive
integer n. Let On (respectively,En ) be the set of numbers representable as an odd (respectively,
even) sum of elements oft s1; : : : ; snu. Set E �

” 8
n� 1 En and O �

” 8
n� 1 On . We assume that

0 PEn since 0 is representable as a sum of 0 terms.
We now proceed to our proof. Assume, to the contrary, that there exist only �nitely

many positive integers that are not clean and denote the number ofnon-clean positive integers
by m � 1. Clearly, S is in�nite. By Property 1 from Solution 1, every positive integern has at
most one odd and at most one even representation.

Step 1. We estimatesn� 1 and � n� 1.

Upper bounds: Property 1 yields |On | � | En | � 2n� 1, so
�
�r1; 2n� 1 � ms zOn

�
� ¥ m. Hence,

there exists a clean integerxn P r1; 2n� 1 � ms zOn . The de�nition of On then yields that the
odd representation ofxn contains a term larger thansn . Therefore,sn� 1 ¤ xn ¤ 2n� 1 � m for
every positive integern. Moreover, sinces1 is the smallest clean number, we get� 1 � s1 ¤ m.
Then,

� n� 1 �
n� 1¸

i � 2

si � s1 ¤
n� 1¸

i � 2

p2i � 2 � mq � m � 2n � 1 � p n � 1qm

for every positive integern. Notice that this estimate also holds forn � 0.

Lower bounds: SinceOn� 1 „ r 1; � n� 1s, we have� n� 1 ¥ | On� 1| � 2n for all positive integersn.
Then,

sn� 1 � � n� 1 � � n ¥ 2n � p 2n� 1 � 1 � nmq � 2n� 1 � 1 � nm

for every positive integern.

Combining the above inequalities, we have

2n� 1 � 1 � nm ¤ sn� 1 ¤ 2n� 1 � m and 2n ¤ � n� 1 ¤ 2n � 1 � p n � 1qm; (3)

for every positive integern.

Step 2. We prove Property 3 from Solution 1.
For every integerx and set of integersY, de�ne x � Y � t x � y : y PYu.
In view of Property 1, we get

En� 1 � En \ p sn� 1 � Onq and On� 1 � On \ p sn� 1 � Enq;

where \ denotes the disjoint union operator. Notice also thatsn� 2 ¥ 2n � 1 � p n � 1qm ¡
2n� 1 � 1 � nm ¥ � n for every su�ciently large n. We now claim the following.
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Claim 1. p� n � sn� 1; sn� 2 � sn� 1q „ En for every su�ciently large n.

Proof. For su�ciently large n, all elements ofp� n ; sn� 2q are clean. Clearly, the elements
of p� n ; sn� 2q can be in neitherOn nor O z On� 1. So, p� n ; sn� 2q „ On� 1 z On � sn� 1 � En ,
which yields the claim. l

Now, Claim 1 together with inequalities (3) implies that, for all su�cient ly large n,

E …En … p� n � sn� 1; sn� 2 � sn� 1q …
�
2nm; 2n� 1 � p n � 2qm

�
:

This easily yields that Z¥ 0 z E is also �nite. SinceZ¥ 0 z O is also �nite, by Property 1, there
exists a positive integerN such that every integern ¡ N has exactly one even and one odd
representation.

Step 3. We investigate the structures ofEn and On .

Suppose thatz PE2n . Sincez can be represented as an even sum usingt s1; s2; : : : ; s2nu, so
can its complement� 2n � z. Thus, we getE2n � � 2n � E2n . Similarly, we have

E2n � � 2n � E2n ; O2n � � 2n � O2n ; E2n� 1 � � 2n� 1 � O2n� 1; O2n� 1 � � 2n� 1 � E2n� 1: (4)

Claim 2. For every su�ciently large n, we have

r0; � ns …On … pN; � n � N q and r0; � ns …En … pN; � n � N q:

Proof. Clearly On ; En „ r 0; � nsfor every positive integern. We now proveOn ; En … pN; � n � N q.
Taking n su�ciently large, we may assume thatsn� 1 ¥ 2n� 1� 1� nm ¡ 1

2p2n� 1� 1� nmq ¥ � n {2.
Therefore, the odd representation of every element ofpN; � n {2s cannot contain a term larger
than sn . Thus, pN; � n {2s „ On . Similarly, sincesn� 1 � s1 ¡ � n {2, we also havepN; � n {2s „ En .
Equations (4) then yield that, for su�ciently large n, the interval pN; � n � N q is a subset of
both On and En , as desired. l

Step 4. We obtain a �nal contradiction.

Notice that 0 P Z¥ 0 z O and 1 P Z¥ 0 z E. Therefore, the setsZ¥ 0 z O and Z¥ 0 z E are
nonempty. Denoteo � maxpZ¥ 0 z Oq and e � maxpZ¥ 0 z Eq. Observe also thate; o¤ N .

Taking k su�ciently large, we may assume that � 2k ¡ 2N and that Claim 2 holds for
all n ¥ 2k. Due to (4) and Claim 2, we have that� 2k � e is the minimal number greater thanN
which is not in E2k , i.e., � 2k � e � s2k� 1 � s1. Similarly,

� 2k � o � s2k� 1; � 2k� 1 � e � s2k� 2; and � 2k� 1 � o � s2k� 2 � s1:

Therefore, we have

s1 � p s2k� 1 � s1q � s2k� 1 � p � 2k � eq � p � 2k � oq � o � e

� p � 2k� 1 � eq � p � 2k� 1 � oq � s2k� 2 � p s2k� 2 � s1q � � s1;

which is impossible sinces1 ¡ 0.
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C7. In a company of people some pairs are enemies. A group of people is called unsociable
if the number of members in the group is odd and at least 3, and it is possible to arrange all
its members around a round table so that every two neighbors are enemies. Given that there
are at most 2015 unsociable groups, prove that it is possible to partition the company into 11
parts so that no two enemies are in the same part.

(Russia)

Solution 1. Let G � p V; Eq be a graph whereV is the set of people in the company andE
is the set of the enemy pairs | the edges of the graph. In this language, partitioning into 11
disjoint enemy-free subsets means properly coloring the verticesof this graph with 11 colors.

We will prove the following more general statement.

Claim. Let G be a graph with chromatic numberk ¥ 3. Then G contains at least 2k� 1 � k
unsociable groups.

Recall that the chromatic number ofG is the leastk such that a proper coloring

V � V1 \ � � � \ Vk (1)

exists. In view of 211 � 12 ¡ 2015, the claim implies the problem statement.

Let G be a graph with chromatic numberk. We say that a proper coloring (1) ofG is
leximinimal, if the k-tuple p|V1|; |V2|; : : : ; |Vk |q is lexicographically minimal; in other words, the
following conditions are satis�ed: the numbern1 � | V1| is minimal; the number n2 � | V2| is
minimal, subject to the previously chosen value ofn1; . . . ; the numbernk� 1 � | Vk� 1| is minimal,
subject to the previously chosen values ofn1; : : : ; nk� 2.

The following lemma is the core of the proof.

Lemma 1. Suppose thatG � p V; Eq is a graph with odd chromatic numberk ¥ 3, and let (1)
be one of its leximinimal colorings. ThenG contains an odd cycle which visits all color classes
V1; V2; : : : ; Vk .

Proof of Lemma 1. Let us call a cyclecolorful if it visits all color classes.
Due to the de�nition of the chromatic number, V1 is nonempty. Choose an arbitrary vertex

v PV1. We construct a colorful odd cycle that has only one vertex inV1, and this vertex isv.

We draw a subgraph ofG as follows. Placev in the center, and arrange the setsV2; V3; : : : ; Vk

in counterclockwise circular order around it. For convenience, letVk� 1 � V2. We will draw
arrows to add direction to some edges ofG, and mark the vertices these arrows point to. First
we draw arrows fromv to all its neighbors in V2, and mark all those neighbors. If some vertex
u P Vi with i P t2; 3; : : : ; ku is already marked, we draw arrows fromu to all its neighbors
in Vi � 1 which are not marked yet, and we mark all of them. We proceed doingthis as long as
it is possible. The process of marking is exempli�ed in Figure 1.

Notice that by the rules of our process, in the �nal state, markedvertices inVi cannot have
unmarked neighbors inVi � 1. Moreover,v is connected to all marked vertices by directed paths.

Now move each marked vertex to the next color class in circular order (see an example in
Figure 3). In view of the arguments above, the obtained coloringV1 \ W2 \ � � � \ Wk is proper.
Notice that v has a neighborw PW2, because otherwise

�
V1 z tvu

�
\

�
W2 Y t vu

�
\ W3 \ � � � \ Wk

would be a proper coloring lexicographically smaller than (1). Ifw was unmarked, i.e.,w was
an element ofV2, then it would be marked at the beginning of the process and thus moved
to V3, which did not happen. Therefore,w is marked andw PVk .
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�!

Figure 1 Figure 2

Sincew is marked, there exists a directed path fromv to w. This path moves through the
setsV2; : : : ; Vk in circular order, so the number of edges in it is divisible byk � 1 and thus even.
Closing this path by the edgew Ñ v, we get a colorful odd cycle, as required. l

Proof of the claim. Let us choose a leximinimal coloring (1) ofG. For every setC „ t 1; 2; : : : ; ku
such that |C| is odd and greater than 1, we will provide an odd cycle visiting exactly those
color classes whose indices are listed in the setC. This property ensures that we have di�erent
cycles for di�erent choices ofC, and it proves the claim because there are 2k� 1 � k choices for
the set C.

Let VC �
”

cPC Vc, and let GC be the induced subgraph ofG on the vertex setVC . We
also have the induced coloring ofVC with |C| colors; this coloring is of course proper. Notice
further that the induced coloring is leximinimal: if we had a lexicographically smaller coloring
pWcqcPC of GC , then these classes, together the original color classesVi for i RC, would provide
a proper coloring which is lexicographically smaller than (1). Hence Lemma 1, applied to the
subgraph GC and its leximinimal coloring pVcqcPC , provides an odd cycle that visits exactly
those color classes that are listed in the setC. l

Solution 2. We provide a di�erent proof of the claim from the previous solution.
We say that a graph iscritical if deleting any vertex from the graph decreases the graph's

chromatic number. Obviously every graph contains a critical induced subgraph with the same
chromatic number.

Lemma 2. Suppose thatG � p V; Eq is a critical graph with chromatic numberk ¥ 3. Then
every vertexv of G is contained in at least 2k� 2 � 1 unsociable groups.

Proof. For every setX „ V , denote bynpX q the number of neighbors ofv in the set X .
SinceG is critical, there exists a proper coloring ofG z tvu with k � 1 colors, so there exists

a proper coloringV � V1 \ V2 \ � � � \ Vk of G such that V1 � t vu. Among such colorings,
take one for which the sequence

�
npV2q; npV3q; : : : ; npVkq

�
is lexicographically minimal. Clearly,

npVi q ¡ 0 for every i � 2; 3; : : : ; k; otherwiseV2 \ : : : \ Vi � 1 \ p Vi Y V1q \ Vi � 1 \ : : : Vk would
be a proper coloring ofG with k � 1 colors.

We claim that for everyC „ t 2; 3; : : : ; ku with |C| ¥ 2 being even,G contains an unsociable
group so that the set of its members' colors is preciselyC Y t 1u. Since the number of such
setsC is 2k� 2 � 1, this proves the lemma. Denote the elements ofC by c1; : : : ; c2` in increasing
order. For brevity, let Ui � Vci . Denote byN i the set of neighbors ofv in Ui .
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We show that for everyi � 1; : : : ; 2` � 1 and x P N i , the subgraph induced byUi Y Ui � 1

contains a path that connectsx with another point in N i � 1. For the sake of contradiction,
suppose that no such path exists. LetS be the set of vertices that lie in the connected component
of x in the subgraph induced byUi Y Ui � 1, and let P � Ui X S, and Q � Ui � 1 X S (see Figure 3).
Since x is separated fromN i � 1, the sets Q and N i � 1 are disjoint. So, if we re-colorG by
replacing Ui and Ui � 1 by pUi Y Qq zP and pUi � 1 Y Pq zQ, respectively, we obtain a proper
coloring such thatnpUi q � npVci q is decreased and onlynpUi � 1q � npVci � 1q is increased. That
contradicts the lexicographical minimality of

�
npV2q; npV3q; : : : ; npVkq

�
.

Ui Ui+1

N i+1x
N i

v

QP

S

Figure 3

Next, we build a path through U1; U2; : : : ; U2` as follows. Let the starting point of the path
be an arbitrary vertex v1 in the set N1. For i ¤ 2` � 1, if the vertex vi PN i is already de�ned,
connectvi to some vertex inN i � 1 in the subgraph induced byUi Y Ui � 1, and add these edges to
the path. Denote the new endpoint of the path byvi � 1; by the construction we havevi � 1 PN i � 1

again, so the process can be continued. At the end we have a path that starts at v1 P N1 and
ends at somev2` PN2` . Moreover, all edges in this path connect vertices in neighboring classes:
if a vertex of the path lies inUi , then the next vertex lies inUi � 1 or Ui � 1. Notice that the path
is not necessary simple, so take a minimal subpath of it. The minimal subpath is simple and
connects the same endpointsv1 and v2` . The property that every edge steps to a neighboring
color class (i.e., fromUi to Ui � 1 or Ui � 1) is preserved. So the resulting path also visits all of
U1; : : : ; U2` , and its length must be odd. Closing the path with the edgesvv1 and v2`v we obtain
the desired odd cycle (see Figure 4). l

N 2̀N1 N2 N3

v1 v2
v3 v2̀

v2̀ � 1

N 2̀ � 1

v

U2̀U2̀ � 1U3U2U1

: : :

Figure 4

Now we prove the claim by induction onk ¥ 3. The base casek � 3 holds by applying
Lemma 2 to a critical subgraph. For the induction step, letG0 be a critical k-chromatic sub-
graph of G, and let v be an arbitrary vertex of G0. By Lemma 2, G0 has at least 2k� 2 � 1
unsociable groups containingv. On the other hand, the graphG0 z tvu has chromatic num-
ber k � 1, so it contains at least 2k� 2 � p k � 1qunsociable groups by the induction hypothesis.
Altogether, this gives 2k� 2 � 1� 2k� 2 � p k � 1q � 2k� 1 � k distinct unsociable groups inG0 (and
thus in G).
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Comment 1. The claim we proved is sharp. The complete graph withk vertices has chromatic
number k and contains exactly 2k� 1 � k unsociable groups.

Comment 2. The proof of Lemma 2 works for odd values of|C| ¥ 3 as well. Hence, the second
solution shows the analogous statement that the number of even sized unsociable groups is at least
2k � 1 �

� k
2

�
.
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Geometry

G1. Let ABC be an acute triangle with orthocenterH . Let G be the point such that the
quadrilateral ABGH is a parallelogram. LetI be the point on the line GH such that AC
bisects HI . Suppose that the lineAC intersects the circumcircle of the triangleGCI at C
and J . Prove that IJ � AH .

(Australia)

Solution 1. SinceHG k AB and BG k AH , we haveBG K BC and CH K GH . There-
fore, the quadrilateral BGCH is cyclic. SinceH is the orthocenter of the triangleABC , we
have= HAC � 900� = ACB � = CBH . Using that BGCH and CGJI are cyclic quadrilaterals,
we get

= CJI � = CGH � = CBH � = HAC:

Let M be the intersection ofAC and GH , and let D � A be the point on the lineAC such
that AH � HD . Then = MJI � = HAC � = MDH .

Since = MJI � = MDH , = IMJ � = HMD , and IM � MH , the triangles IMJ and
HMD are congruent, and thusIJ � HD � AH .

A B

C

H
G

MI

J

D

Comment. Instead of introducing the point D , one can complete the solution by using the law of
sines in the trianglesIJM and AMH , yielding

IJ
IM

�
sin= IMJ
sin= MJI

�
sin= AMH
sin= HAM

�
AH
MH

�
AH
IM

:

Solution 2. Obtain = CGH � = HAC as in the previous solution. In the parallelogram
ABGH we have= BAH � = HGB . It follows that

= HMC � = BAC � = BAH � = HAC � = HGB � = CGH � = CGB:

So the right trianglesCMH and CGB are similar. Also, in the circumcircle of triangleGCI
we have similar trianglesMIJ and MCG. Therefore,

IJ
CG

�
MI
MC

�
MH
MC

�
GB
GC

�
AH
CG

:

HenceIJ � AH .
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G2. Let ABC be a triangle inscribed into a circle 
 with center O. A circle � with center A
meets the sideBC at points D and E such that D lies betweenB and E. Moreover, letF and
G be the common points of � and 
. We assume thatF lies on the arcAB of 
 not containing
C, and G lies on the arcAC of 
 not containing B. The circumcircles of the trianglesBDF
and CEG meet the sidesAB and AC again at K and L, respectively. Suppose that the lines
F K and GL are distinct and intersect atX . Prove that the points A, X , and O are collinear.

(Greece)

Solution 1. It su�ces to prove that the lines F K and GL are symmetric aboutAO. Now
the segmentsAF and AG, being chords of 
 with the same length, are clearly symmetric with
respect toAO. Hence it is enough to show

= KF A � = AGL : (1)

Let us denote the circumcircles ofBDF and CEG by ! B and ! C , respectively. To prove (1),
we start from

= KF A � = DF G � = GF A � = DF K :

In view of the circles! B , �, and 
, this may be rewritten as

= KF A � = CEG � = GBA � = DBK � = CEG � = CBG :

Due to the circles! C and 
, we obtain = KF A � = CLG � = CAG � = AGL . Thereby the
problem is solved.

A

B C
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Figure 1

Solution 2. Again, we denote the circumcircle ofBDKF by ! B . In addition, we set � �
= BAC , ' � = ABF , and  � = EDA � = AED (see Figure 2). Notice thatAF � AG entails
' � = GCA, so all three of � , ' , and  respect the \symmetry" betweenB and C of our
con�guration. Again, we reduce our task to proving (1).

This time, we start from

2= KF A � 2p= DF A � = DF K q:

Since the triangleAF D is isosceles, we have

= DF A � = ADF � = EDF �  � = BF D � = EBF �  :
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Moreover, because of the circle! B we have= DF K � = CBA. Altogether, this yields

2= KF A � = DF A �
�
= BF D � = EBF �  

�
� 2= CBA ;

which simpli�es to
2= KF A � = BF A � ' �  � = CBA :

Now the quadrilateral AF BC is cyclic, so this entails 2= KF A � � � ' �  .

Due to the \symmetry" between B and C alluded to above, this argument also shows that
2= AGL � � � ' �  . This concludes the proof of (1).

 
'

 
'
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Comment 1. As the �rst solution shows, the assumption that A be the center of � may be weakened
to the following one: The center of � lies on the line OA. The second solution may be modi�ed to
yield the same result.

Comment 2. It might be interesting to remark that = GDK � 900. To prove this, let G1 denote
the point on � diametrically opposite to G. Because of= KDF � = KBF � = AGF � = G1DF , the
points D , K , and G1 are collinear, which leads to the desired result. Notice that due to symmetry we
also have= LEF � 900.

Moreover, a standard argument shows that the trianglesAGL and BGE are similar. By symmetry
again, also the trianglesAFK and CDF are similar.

There are several ways to derive a solution from these facts.For instance, one may argue that

= KFA � = BFA � = BFK � = BFA � = EDG 1 � p 1800 � = AGB q � p 1800 � = G1GEq

� = AGE � = AGB � = BGE � = AGL :

Comment 3. The original proposal did not contain the point X in the assumption and asked instead
to prove that the lines FK , GL , and AO are concurrent. This di�ers from the version given above only
insofar as it also requires to show that these lines cannot beparallel. The Problem Selection Committee
removed this part from the problem intending to make it thus more suitable for the Olympiad.

For the sake of completeness, we would still like to sketch one possibility for proving FK , AO here.
As the points K and O lie in the angular region = FAG, it su�ces to check = KFA � = FAO   1800.
Multiplying by 2 and making use of the formulae from the second solution, we see that this is equivalent
to p� � ' �  q � p 1800 � 2' q   3600, which in turn is an easy consequence of�   1800.
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G3. Let ABC be a triangle with = C � 900, and let H be the foot of the altitude from C.
A point D is chosen inside the triangleCBH so that CH bisectsAD . Let P be the intersection
point of the lines BD and CH . Let ! be the semicircle with diameterBD that meets the
segmentCB at an interior point. A line through P is tangent to ! at Q. Prove that the
lines CQ and AD meet on! .

(Georgia)

Solution 1. Let K be the projection ofD onto AB ; then AH � HK (see Figure 1). Since
P H k DK , we have

P D
P B

�
HK
HB

�
AH
HB

: (1)

Let L be the projection ofQ onto DB . SinceP Q is tangent to ! and = DQB � = BLQ �
900, we have= P QD � = QBP � = DQL . Therefore,QD and QB are respectively the internal
and the external bisectors of= P QL. By the angle bisector theorem, we obtain

P D
DL

�
P Q
QL

�
P B
BL

: (2)

The relations (1) and (2) yield
AH
HB

�
P D
P B

�
DL
LB

. So, the spiral similarity � centered atB

and sendingA to D mapsH to L. Moreover, � sends the semicircle with diameterAB passing
through C to ! . Due to CH K AB and QL K DB , it follows that � pCq � Q.

Hence, the trianglesABD and CBQ are similar, so= ADB � = CQB. This means that the
lines AD and CQ meet at some pointT, and this point satis�es = BDT � = BQT . Therefore,
T lies on! , as needed.

A B

C

D

H K

P

Q
T

L

!

A B

C

D

H K

P

Q0

T

�

!

Figure 1 Figure 2

Comment 1. Since= BAD � = BCQ, the point T lies also on the circumcircle of the triangleABC .

Solution 2. Let � be the circumcircle of ABC , and let AD meet ! at T. Then = AT B �
= ACB � 900, soT lies on � as well. As in the previous solution, letK be the projection ofD
onto AB ; then AH � HK (see Figure 2).

Our goal now is to prove that the pointsC, Q, and T are collinear. LetCT meet ! again
at Q1. Then, it su�ces to show that P Q1 is tangent to ! , or that = P Q1D � = Q1BD .

Since the quadrilateralBDQ 1T is cyclic and the trianglesAHC and KHC are congruent, we
have = Q1BD � = Q1T D � = CT A � = CBA � = ACH � = HCK . Hence, the right triangles

CHK and BQ1D are similar. This implies that
HK
CK

�
Q1D
BD

, and thus HK � BD � CK � Q1D.

Notice that P H k DK ; therefore, we have
P D
BD

�
HK
BK

, and soP D � BK � HK � BD .

Consequently,P D � BK � HK � BD � CK � Q1D, which yields
P D
Q1D

�
CK
BK

.

Since= CKA � = KAC � = BDQ 1, the trianglesCKB and P DQ1are similar, so= P Q1D �
= CBA � = Q1BD , as required.
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Comment 2. There exist several other ways to prove thatPQ1 is tangent to ! . For instance, one

may compute
PD
PB

and
PQ1

PB
in terms of AH and HB to verify that PQ12 � PD � PB, concluding that

PQ1 is tangent to ! .

Another possible approach is the following. As in Solution 2, we introduce the points T and Q1

and mention that the triangles ABC and DBQ 1 are similar (see Figure 3).
Let M be the midpoint of AD , and let L be the projection of Q1 onto AB . Construct E on the

line AB so that EP is parallel to AD . Projecting from P, we get pA; B ; H; E q � p A; D ; M; 8q � � 1.

Since
EA
AB

�
PD
DB

, the point P is the image ofE under the similarity transform mapping ABC

to DBQ 1. Therefore, we havepD; B ; L; P q � p A; B ; H; E q � � 1, which means that Q1D and Q1B are
respectively the internal and the external bisectors of= PQ1L . This implies that PQ1 is tangent to ! ,
as required.

M

A B

C

D

E H K

P

Q0

T

L

!

Figure 3

Solution 3. Introduce the points T and Q1 as in the previous solution. Note thatT lies on
the circumcircle ofABC . Here we present yet another proof thatP Q1 is tangent to ! .

Let 
 be the circle completing the semicircle! . Construct a point F symmetric to C with
respect toAB . Let S � T be the second intersection point ofF T and 
 (see Figure 4).

A B

C

D

H K

P

Q0

T

F

S




Figure 4

Since AC � AF , we have= DKC � = HCK � = CBA � = CT A � = DT S � 1800 �
= SKD . Thus, the points C; K , and S are collinear. Notice also that= Q1KD � = Q1T D �
= HCK � = KF H � 1800 � = DKF . This implies that the points F; K , and Q1 are collinear.

Applying Pascal 's theorem to the degenerate hexagonKQ 1Q1T SS, we get that the tan-
gents to 
 passing through Q1 and S intersect onCF . The relation = Q1T D � = DT S yields
that Q1 and S are symmetric with respect toBD . Therefore, the two tangents also intersect
on BD . Thus, the two tangents pass throughP. Hence,P Q1 is tangent to ! , as needed.
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G4. Let ABC be an acute triangle, and letM be the midpoint of AC. A circle ! passing
through B and M meets the sidesAB and BC again at P and Q, respectively. Let T be
the point such that the quadrilateral BP T Q is a parallelogram. Suppose thatT lies on the
circumcircle of the triangleABC . Determine all possible values ofBT {BM .

(Russia)

Answer.
?

2.

Solution 1. Let S be the center of the parallelogramBP T Q, and let B 1 � B be the point on
the ray BM such that BM � MB 1 (see Figure 1). It follows thatABCB 1 is a parallelogram.
Then, = ABB 1 � = P QM and = BB 1A � = B 1BC � = MP Q, and so the trianglesABB 1 and
MQP are similar. It follows that AM and MS are corresponding medians in these triangles.
Hence,

= SMP � = B 1AM � = BCA � = BT A: (1)

Since= ACT � = P BT and = T AC � = T BC � = BT P , the triangles T CA and P BT are
similar. Again, asT M and P S are corresponding medians in these triangles, we have

= MT A � = T P S � = BQP � = BMP: (2)

Now we deal separately with two cases.

Case 1. S does not lie onBM . Since the con�guration is symmetric betweenA and C, we
may assume thatS and A lie on the same side with respect to the lineBM .

Applying (1) and (2), we get

= BMS � = BMP � = SMP � = MT A � = BT A � = MT B;

and so the trianglesBSM and BMT are similar. We now haveBM 2 � BS � BT � BT 2{2, so
BT �

?
2BM .

Case 2. S lies on BM . It follows from (2) that = BCA � = MT A � = BQP � = BMP
(see Figure 2). Thus,P Q k AC and P M k AT . Hence,BS{BM � BP {BA � BM {BT , so
BT 2 � 2BM 2 and BT �

?
2BM .
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Comment 1. Here is another way to show that the trianglesBSM and BMT are similar. Denote
by 
 the circumcircle of the triangle ABC . Let R be the second point of intersection of! and 
, and
let � be the spiral similarity centered at R mapping ! to 
. Then, one may show that � maps each
point X on ! to a point Y on 
 such that B , X , and Y are collinear (see Figure 3). If we letK and L
be the second points of intersection ofBM with 
 and of BT with ! , respectively, then it follows that
the triangle MKT is the image ofSML under � . We now obtain = BSM � = T MB , which implies
the desired result.
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Solution 2. Again, we denote by 
 the circumcircle of the triangleABC .
Choose the pointsX and Y on the raysBA and BC respectively, so that= MXB � = MBC

and = BY M � = ABM (see Figure 4). Then the trianglesBMX and Y MB are similar. Since
= XP M � = BQM , the points P and Q correspond to each other in these triangles. So, if
ÝÝÑ
BP � � �

ÝÝÑ
BX , then

ÝÝÑ
BQ � p 1 � � q �

ÝÝÑ
BY . Thus

ÝÝÑ
BT �

ÝÝÑ
BP �

ÝÝÑ
BQ �

ÝÝÑ
BY � � � p

ÝÝÑ
BX �

ÝÝÑ
BY q �

ÝÝÑ
BY � � �

ÝÝÑ
Y X;

which means thatT lies on the lineXY .
Let B 1 � B be the point on the ray BM such that BM � MB 1. Then = MB 1A �

= MBC � = MXB and = CB1M � = ABM � = BY M . This means that the trianglesBMX ,
BAB 1, Y MB , and B 1CB are all similar; henceBA � BX � BM � BB 1 � BC � BY . Thus
there exists an inversion centered atB which swapsA with X , M with B 1, and C with Y.
This inversion then swaps 
 with the line XY , and hence it preservesT. Therefore, we have
BT 2 � BM � BB 1 � 2BM 2, and BT �

?
2BM .

Solution 3. We begin with the following lemma.

Lemma. Let ABCT be a cyclic quadrilateral. LetP and Q be points on the sidesBA and BC
respectively, such thatBP T Q is a parallelogram. ThenBP � BA � BQ � BC � BT 2.

Proof. Let the circumcircle of the triangleQT C meet the line BT again at J (see Figure 5).
The power ofB with respect to this circle yields

BQ � BC � BJ � BT: (3)
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We also have= T JQ � 1800 � = QCT � = T AB and = QT J � = ABT , and so the triangles
T JQ and BAT are similar. We now haveT J{T Q � BA {BT . Therefore,

T J � BT � T Q � BA � BP � BA: (4)

Combining (3) and (4) now yields the desired result. l

Let X and Y be the midpoints ofBA and BC respectively (see Figure 6). Applying the
lemma to the cyclic quadrilateralsP BQM and ABCT , we obtain

BX � BP � BY � BQ � BM 2

and
BP � BA � BQ � BC � BT 2:

SinceBA � 2BX and BC � 2BY , we haveBT 2 � 2BM 2, and soBT �
?

2BM .
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Figure 5 Figure 6

Comment 2. Here we give another proof of the lemma usingPtolemy 's theorem. We readily have

T C � BA � T A � BC � AC � BT:

The lemma now follows from
BP
T C

�
BQ
T A

�
BT
AC

�
sin= BCT
sin= ABC

:
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G5. Let ABC be a triangle with CA � CB. Let D, F , and G be the midpoints of the
sidesAB , AC, and BC, respectively. A circle � passing throughC and tangent to AB at D
meets the segmentsAF and BG at H and I , respectively. The pointsH 1 and I 1 are symmetric
to H and I about F and G, respectively. The lineH 1I 1 meets CD and F G at Q and M ,
respectively. The lineCM meets � again at P. Prove that CQ � QP.

(El Salvador)

Solution 1. We may assume thatCA ¡ CB. Observe thatH 1 and I 1 lie inside the segments
CF and CG, respectively. Therefore,M lies outside4 ABC (see Figure 1).

Due to the powers of pointsA and B with respect to the circle �, we have

CH 1 � CA � AH � AC � AD 2 � BD 2 � BI � BC � CI 1 � CB:

Therefore,CH 1�CF � CI 1�CG. Hence, the quadrilateralH 1I 1GF is cyclic, and so= I 1H 1C �
= CGF.

Let DF and DG meet � again at R and S, respectively. We claim that the pointsR and S
lie on the line H 1I 1.

Observe thatF H 1�F A � F H �F C � F R�F D . Thus, the quadrilateralADH 1R is cyclic, and
hence= RH 1F � = F DA � = CGF � = I 1H 1C. Therefore, the pointsR; H 1, andI 1are collinear.
Similarly, the points S; H1, and I 1 are also collinear, and so all the pointsR; H 1; Q; I 1; S, and M
are all collinear.
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Figure 1 Figure 2

Then, = RSD � = RDA � = DF G. Hence, the quadrilateralRSGF is cyclic (see Figure 2).
Therefore,MH 1� MI 1 � MF � MG � MR � MS � MP � MC . Thus, the quadrilateral CP I 1H 1

is also cyclic. Let! be its circumcircle.
Notice that = H 1CQ � = SDC � = SRC and = QCI 1 � = CDR � = CSR. Hence,

4 CH 1Q � 4 RCQ and 4 CI 1Q � 4 SCQ, and thereforeQH 1 � QR � QC2 � QI 1 � QS.
We apply the inversion with centerQ and radiusQC. Observe that the pointsR; C, and S

are mapped toH 1; C, and I 1, respectively. Therefore, the circumcircle � of4 RCS is mapped
to the circumcircle ! of 4 H 1CI 1. SinceP and C belong to both circles and the pointC is
preserved by the inversion, we have thatP is also mapped to itself. We then getQP2 � QC2.
Hence,QP � QC.

Comment 1. The problem statement still holds when � intersects the sides CA and CB outside
segmentsAF and BG, respectively.
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Solution 2. Let X � HI X AB , and let the tangent to � at C meet AB at Y. Let XC
meet � again at X 1 (see Figure 3). Projecting fromC, X , and C again, we havepX; A ; D; B q �
pX 1; H ; D; I q � p C; I ; D; H q � p Y; B; D; A q. SinceA and B are symmetric aboutD, it follows
that X and Y are also symmetric aboutD.

Now, Menelaus ' theorem applied to4 ABC with the line HIX yields

1 �
CH
HA

�
BI
IC

�
AX
XB

�
AH 1

H 1C
�

CI 1

I 1B
�

BY
Y A

:

By the converse ofMenelaus ' theorem applied to 4 ABC with points H 1; I 1; Y, we get that
the points H 1; I 1; Y are collinear.

A B

C

D
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Figure 3

Let T be the midpoint of CD, and let O be the center of �. Let CM meet T Y at N . To
avoid confusion, we clean some super
uous details out of the picture (see Figure 4).

Let V � MT X CY. SinceMT k Y D and DT � T C, we get CV � V Y. Then Ceva 's
theorem applied to4 CT Y with the point M yields

1 �
T Q
QC

�
CV
V Y

�
Y N
NT

�
T Q
QC

�
Y N
NT

:

Therefore, T Q
QC � T N

NY . So,NQ k CY, and thus NQ K OC.
Note that the points O; N; T, and Y are collinear. Therefore,CQ K ON. So, Q is the

orthocenter of 4 OCN, and henceOQ K CP. Thus, Q lies on the perpendicular bisector
of CP, and thereforeCQ � QP, as required.

C

D
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Comment 2. The second part of Solution 2 provides a proof of the following more general statement,
which does not involve a speci�c choice ofQ on CD.

Let Y C and Y D be two tangents to a circle� with center O (see Figure 4). Let ` be the midline
of 4 Y CD parallel to Y D. Let Q and M be two points on CD and `, respectively, such that the
line QM passes throughY . Then OQ K CM .



54 IMO 2015 Thailand

G6. Let ABC be an acute triangle withAB ¡ AC, and let � be its circumcircle. Let H ,
M , and F be the orthocenter of the triangle, the midpoint ofBC, and the foot of the altitude
from A, respectively. Let Q and K be the two points on � that satisfy = AQH � 900 and
= QKH � 900. Prove that the circumcircles of the trianglesKQH and KF M are tangent to
each other.

(Ukraine)

Solution 1. Let A1 be the point diametrically opposite toA on �. Since = AQA 1 � 900 and
= AQH � 900, the points Q, H , and A1 are collinear. Similarly, if Q1 denotes the point on �
diametrically opposite to Q, then K , H , and Q1 are collinear. Let the lineAHF intersect �
again at E; it is known that M is the midpoint of the segmentHA 1 and that F is the midpoint
of HE . Let J be the midpoint of HQ1.

Consider any point T such that T K is tangent to the circle KQH at K with Q and T
lying on di�erent sides of KH (see Figure 1). Then= HKT � = HQK and we are to prove
that = MKT � = CF K . Thus it remains to show that = HQK � = CF K � = HKM . Due
to = HQK � 900 � = Q1HA 1 and = CF K � 900 � = KF A , this means the same as= Q1HA 1 �
= KF A � = HKM . Now, since the trianglesKHE and AHQ 1 are similar with F and J being
the midpoints of corresponding sides, we have= KF A � = HJA , and analogously one may
obtain = HKM � = JQH . Thereby our task is reduced to verifying

= Q1HA 1 � = HJA � = JQH :

K
�

A

T

C

EA0

Q0

B

H

J

M F

Q

A0

J

Q

Q0

�

O

A

H

Figure 1 Figure 2

To avoid confusion, let us draw a new picture at this moment (see Figure 2). Owing to
= Q1HA 1 � = JQH � = HJQ and = HJA � = QJA � = HJQ, we just have to show that
2= JQH � = QJA. To this end, it su�ces to remark that AQA 1Q1 is a rectangle and thatJ ,
being de�ned to be the midpoint ofHQ1, has to lie on the mid parallel ofQA1 and Q1A.

Solution 2. We de�ne the points A1 and E and prove that the ray MH passes throughQ
in the same way as in the �rst solution. Notice that the pointsA1 and E can play analogous
roles to the pointsQ and K , respectively: pointA1 is the second intersection of the lineMH
with �, and E is the point on � with the property = HEA 1 � 900 (see Figure 3).

In the circlesKQH and EA 1H , the line segmentsHQ and HA 1 are diameters, respectively;
so, these circles have a common tangentt at H , perpendicular to MH . Let R be the radical
center of the circlesABC , KQH and EA 1H . Their pairwise radical axes are the linesQK ,
A1E and the line t; they all pass throughR. Let S be the midpoint of HR; by = QKH �
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= HEA 1 � 900, the quadrilateral HERK is cyclic and its circumcenter isS; hence we have
SK � SE � SH. The line BC, being the perpendicular bisector ofHE , passes throughS.

The circle HMF also is tangent tot at H ; from the power ofS with respect to the circle
HMF we have

SM � SF � SH2 � SK 2:

So, the power ofS with respect to the circlesKQH and KF M is SK 2. Therefore, the line
segmentSK is tangent to both circles atK .
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G7. Let ABCD be a convex quadrilateral, and letP, Q, R, and S be points on the sides
AB , BC, CD, and DA , respectively. Let the line segmentsP R and QS meet at O. Suppose
that each of the quadrilateralsAP OS, BQOP , CROQ, and DSOR has an incircle. Prove that
the lines AC, P Q, and RS are either concurrent or parallel to each other.

(Bulgaria)

Solution 1. Denote by 
 A , 
 B , 
 C , and 
 D the incircles of the quadrilateralsAP OS, BQOP ,
CROQ, and DSOR, respectively.

We start with proving that the quadrilateral ABCD also has an incircle which will be
referred to as 
. Denote the points of tangency as in Figure 1. It iswell-known that QQ1 � OO1

(if BC k P R, this is obvious; otherwise, one may regard the two circles involved as the incircle
and an excircle of the triangle formed by the linesOQ, P R, and BC). Similarly, OO1 � P P1.
Hence we haveQQ1 � P P1. The other equalities of segment lengths marked in Figure 1 can
be proved analogously. These equalities, together withAP1 � AS1 and similar ones, yield
AB � CD � AD � BC, as required.

A

B

C

D

P

Q

R

S

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

P1
O1

Q1

S1


 A


 B


 C


 D

Figure 1

Next, let us draw the lines parallel toQS through P and R, and also draw the lines parallel
to P R through Q and S. These lines form a parallelogram; denote its vertices byA1, B 1, C1,
and D 1 as shown in Figure 2.

Since the quadrilateralAP OS has an incircle, we haveAP � AS � OP � OS � A1S � A1P.
It is well-known that in this case there also exists a circle! A tangent to the four rays AP ,
AS, A1P, and A1S. It is worth mentioning here that in case when, say, the linesAB and A1B 1

coincide, the circle! A is just tangent to AB at P. We introduce the circles! B , ! C , and ! D in
a similar manner.

Assume that the radii of the circles! A and ! C are di�erent. Let X be the center of the
homothety having a positive scale factor and mapping! A to ! C .

Now, Monge 's theorem applied to the circles! A , 
, and ! C shows that the pointsA, C,
and X are collinear. Applying the same theorem to the circles! A , ! B , and ! C , we see that
the points P, Q, and X are also collinear. Similarly, the pointsR, S, and X are collinear, as
required.

If the radii of ! A and ! C are equal but these circles do not coincide, then the degenerate
version of the same theorem yields that the three linesAC, P Q, and RS are parallel to the
line of centers of! A and ! C .

Finally, we need to say a few words about the case when! A and ! C coincide (and thus they
also coincide with 
, ! B , and ! D ). It may be regarded as the limit case in the following manner.
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Figure 2

Let us �x the positions of A, P, O, and S (thus we also �x the circles! A , 
 A , 
 B , and 
 D ). Now
we vary the circle
 C inscribed into = QOR; for each of its positions, one may reconstruct the
lines BC and CD as the external common tangents to
 B , 
 C and 
 C , 
 D di�erent from P R
and QS, respectively. After such variation, the circle 
 changes, so the result obtained above
may be applied.

Solution 2. Applying Menelaus ' theorem to 4 ABC with the line P Q and to 4 ACD with
the line RS, we see that the lineAC meetsP Q and RS at the same point (possibly at in�nity)
if and only if

AP
P B

�
BQ
QC

�
CR
RD

�
DS
SA

� 1: (1)

So, it su�ces to prove (1).

We start with the following result.

Lemma 1. Let EF GH be a circumscribed quadrilateral, and letM be its incenter. Then

EF � F G
GH � HE

�
F M 2

HM 2
:

Proof. Notice that = EMH � = GMF � = F ME � = HMG � 1800, = F GM � = MGH , and
= HEM � = MEF (see Figure 3). By the law of sines, we get

EF
F M

�
F G
F M

�
sin= F ME � sin= GMF
sin= MEF � sin= F GM

�
sin= HMG � sin= EMH
sin= MGH � sin= HEM

�
GH
HM

�
HE
HM

: l
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Figure 3 Figure 4

We denote byI , J , K , and L the incenters of the quadrilateralsAP OS, BQOP , CROQ,
and DSOR, respectively. Applying Lemma 1 to these four quadrilaterals we get

AP � P O
OS � SA

�
BQ � QO
OP � P B

�
CR � RO
OQ � QC

�
DS � SO
OR � RD

�
P I 2

SI 2
�

QJ 2

P J2
�

RK 2

QK 2
�

SL2

RL 2
;

which reduces to

AP
P B

�
BQ
QC

�
CR
RD

�
DS
SA

�
P I 2

P J2
�

QJ 2

QK 2
�

RK 2

RL 2
�

SL2

SI 2
: (2)

Next, we have= IP J � = JOI � 900, and the line OP separatesI and J (see Figure 4).
This means that the quadrilateral IP JO is cyclic. Similarly, we get that the quadrilateral
JQKO is cyclic with = JQK � 900. Thus, = QKJ � = QOJ � = JOP � = JIP . Hence,

the right triangles IP J and KQJ are similar. Therefore,
P I
P J

�
QK
QJ

. Likewise, we obtain

RK
RL

�
SI
SL

. These two equations together with (2) yield (1).

Comment. Instead of using the sine law, one may prove Lemma 1 by the following approach.

F
G

H

E

M

N

Figure 5

Let N be the point such that 4 NHG � 4 MEF and such that N and M lie on di�erent sides
of the line GH , as shown in Figure 5. Then= GNH � = HMG � = FME � = HMG � 1800. So,
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the quadrilateral GNHM is cyclic. Thus, = MNH � = MGH � = FGM and = HMN � = HGN �

= EFM � = MFG . Hence, 4 HMN � 4 MFG . Therefore,
HM
HG

�
HM
HN

�
HN
HG

�
MF
MG

�
EM
EF

.

Similarly, we obtain
HM
HE

�
MF
ME

�
GM
GF

. By multiplying these two equations, we complete the proof.

Solution 3. We present another approach for showing (1) from Solution 2.

Lemma 2. Let EF GH and E 1F 1G1H 1 be circumscribed quadrilaterals such that= E � = E 1 �
= F � = F 1 � = G � = G1 � = H � = H 1 � 1800. Then

EF � GH
F G � HE

�
E 1F 1 � G1H 1

F 1G1 � H 1E 1
:

Proof. Let M and M 1 be the incenters ofEF GH and E 1F 1G1H 1, respectively. We use the
notation rXY Z s for the area of a triangleXY Z .

Taking into account the relation = F ME � = F 1M 1E 1 � 1800 together with the analogous
ones, we get

EF � GH
F G � HE

�
rMEF s � rMGH s
rMF Gs � rMHE s

�
ME � MF � sin= F ME � MG � MH � sin= HMG
MF � MG � sin= GMF � MH � ME � sin= EMH

�
M 1E 1 � M 1F 1 � sin= F 1M 1E 1 � M 1G1 � M 1H 1 � sin= H 1M 1G1

M 1F 1 � M 1G1 � sin= G1M 1F 1 � M 1H 1 � M 1E 1 � sin= E 1M 1H 1
�

E 1F 1 � G1H 1

F 1G1 � H 1E 1
: l
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Figure 6

Denote by h the homothety centered atO that maps the incircle ofCROQ to the incircle
of AP OS. Let Q1 � hpQq, C1 � hpCq, R1 � hpRq, O1 � O, S1 � S, A1 � A, and P1 � P.
Furthermore, de�ne B 1 � A1P1X C1Q1 and D 1 � A1S1X C1R1 as shown in Figure 6. Then

AP � OS
P O � SA

�
A1P1 � O1S1

P1O1 � S1A1

holds trivially. We also have
CR � OQ
RO � QC

�
C1R1 � O1Q1

R1O1� Q1C1

by the similarity of the quadrilaterals CROQ and C1R1O1Q1.



60 IMO 2015 Thailand

Next, consider the circumscribed quadrilateralsBQOP and B 1Q1O1P1 whose incenters lie
on di�erent sides of the quadrilaterals' shared side lineOP � O1P1. Observe thatBQ k B 1Q1

and that B 1 and Q1 lie on the linesBP and QO, respectively. It is now easy to see that the
two quadrilaterals satisfy the hypotheses of Lemma 2. Thus, we deduce

BQ � OP
QO � P B

�
B 1Q1 � O1P1

Q1O1 � P1B 1
:

Similarly, we get
DS � OR
SO � RD

�
D 1S1 � O1R1

S1O1 � R1D 1
:

Multiplying these four equations, we obtain

AP
P B

�
BQ
QC

�
CR
RD

�
DS
SA

�
A1P1

P1B 1
�

B 1Q1

Q1C1
�

C1R1

R1D 1
�

D 1S1

S1A1
: (3)

Finally, we apply Brianchon 's theorem to the circumscribed hexagonA1P1R1C1Q1S1 and
deduce that the linesA1C1, P1Q1, and R1S1 are either concurrent or parallel to each other. So,
by Menelaus ' theorem, we obtain

A1P1

P1B 1
�

B 1Q1

Q1C1
�

C1R1

R1D 1
�

D 1S1

S1A1
� 1:

This equation together with (3) yield (1).
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G8. A triangulation of a convex polygon � is a partitioning of � into triangles by diagonals
having no common points other than the vertices of the polygon. Wesay that a triangulation
is a Thaiangulation if all triangles in it have the same area.

Prove that any two di�erent Thaiangulations of a convex polygon � di�er by exactly two
triangles. (In other words, prove that it is possible to replace one pair of triangles in the �rst
Thaiangulation with a di�erent pair of triangles so as to obtain the second Thaiangulation.)

(Bulgaria)

Solution 1. We denote byrSs the area of a polygonS.

Recall that each triangulation of a convexn-gon has exactlyn � 2 triangles. This means
that all triangles in any two Thaiangulations of a convex polygon � have the same area.

Let T be a triangulation of a convex polygon �. If four vertices A, B , C, and D of �
form a parallelogram, andT contains two triangles whose union is this parallelogram, then we
say that T contains parallelogramABCD . Notice here that if two ThaiangulationsT1 and T2

of � di�er by two triangles, then the union of these triangles is a quadrilateral each of whose
diagonals bisects its area, i.e., a parallelogram.

We start with proving two properties of triangulations.
Lemma 1. A triangulation of a convex polygon � cannot contain two parallelograms.
Proof. Arguing indirectly, assume that P1 and P2 are two parallelograms contained in some
triangulation T . If they have a common triangle inT , then we may assume thatP1 consists of
triangles ABC and ADC of T , while P2 consists of trianglesADC and CDE (see Figure 1).
But then BC k AD k CE, so the three verticesB, C, and E of � are collinear, which is absurd.

Assume now thatP1 and P2 contain no common triangle. LetP1 � ABCD . The sidesAB ,
BC, CD, and DA partition � into several parts, and P2 is contained in one of them; we may
assume that this part is cut o� from P1 by AD . Then one may label the vertices ofP2 by X ,
Y , Z , and T so that the polygonABCDXY ZT is convex (see Figure 2; it may happen that
D � X and/or T � A, but still this polygon has at least six vertices). But the sum of the
external angles of this polygon atB , C, Y, and Z is already 3600, which is impossible. A �nal
contradiction. l

B

C

E

A

D

AB ZT

C
D X Y

A0

B 0

C0

X

Y

Z

H

Figure 1 Figure 2 Figure 3

Lemma 2. Every triangle in a Thaiangulation T of � contains a side of �.
Proof. Let ABC be a triangle in T . Apply an a�ne transform such that ABC maps to an
equilateral triangle; let A1B 1C1 be the image of this triangle, and �1 be the image of �. Clearly,
T maps into a ThaiangulationT 1 of � 1.

Assume that none of the sides of4 A1B 1C1 is a side of �1. Then T 1 contains some other
triangles with these sides, say,A1B 1Z, C1A1Y, and B 1C1X ; notice that A1ZB 1XC 1Y is a convex
hexagon (see Figure 3). The sum of its external angles atX , Y, and Z is less than 3600. So one
of these angles (say, atZ ) is less than 1200, hence= A1ZB 1 ¡ 600. Then Z lies on a circular arc
subtended byA1B 1 and having angular measure less than 2400; consequently, the altitudeZH
of 4 A1B 1Z is less than

?
3A1B 1{2. Thus rA1B 1Zs   r A1B 1C1s, and T 1 is not a Thaiangulation.

A contradiction. l
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Now we pass to the solution. We say that a triangle in a triangulation of� is an ear if it
contains two sides of �. Note that each triangulation of a polygon contains some ear.

Arguing indirectly, we choose a convex polygon � with the least possible number of sides
such that some two ThaiangulationsT1 and T2 of � violate the problem statement (thus � has
at least �ve sides). Consider now any earABC in T1, with AC being a diagonal of �. If T2

also contains4 ABC , then one may cut4 ABC o� from �, getting a polygon with a smaller
number of sides which also violates the problem statement. This is impossible; thusT2 does
not contain 4 ABC .

Next, T1 contains also another triangle with sideAC, say 4 ACD . By Lemma 2, this
triangle contains a side of �, soD is adjacent to eitherA or C on the boundary of �. We may
assume thatD is adjacent toC.

Assume that T2 does not contain the triangleBCD . Then it contains two di�erent trian-
glesBCX and CDY (possibly, with X � Y); since these triangles have no common interior
points, the polygon ABCDY X is convex (see Figure 4). But, sincerABC s � r BCX s �
rACD s � r CDY s, we get AX k BC and AY k CD which is impossible. ThusT2 con-
tains 4 BCD .

Therefore, rABD s � r ABC s � r ACD s � r BCD s � r ABC s, and ABCD is a parallelogram
contained in T1. Let T 1 be the Thaiangulation of � obtained from T1 by replacing the diago-
nal AC with BD ; then T 1 is distinct from T2 (otherwiseT1 and T2 would di�er by two triangles).
Moreover, T 1 shares a common earBCD with T2. As above, cutting this ear away we obtain
that T2 and T 1 di�er by two triangles forming a parallelogram di�erent from ABCD . Thus T 1

contains two parallelograms, which contradicts Lemma 1.
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D
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A

B C

D

Y

X
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Figure 4 Figure 5

Comment 1. Lemma 2 is equivalent to the well-knownErd }os{ Debrunner inequality stating that
for any triangle PQR and any points A, B , C lying on the sidesQR, RP , and PQ, respectively, we
have

rABC s ¥ min
 
rABR s; rBCP s; rCAQs

(
: (1)

To derive this inequality from Lemma 2, one may assume that (1) does not hold, and choose
some pointsX , Y , and Z inside the triangles BCP , CAQ, and ABR , respectively, so that rABC s �
rABZ s � r BCX s � r CAY s. Then a convex hexagonAZBXCY has a Thaiangulation contain-
ing 4 ABC , which contradicts Lemma 2.

Conversely, assume that a ThaiangulationT of � contains a triangle ABC none of whose sides
is a side of �, and let ABZ , AY C, and XBC be other triangles in T containing the corresponding
sides. ThenAZBXCY is a convex hexagon.

Consider the lines throughA, B , and C parallel to Y Z, ZX , and XY , respectively. They form a
triangle X 1Y 1Z 1 similar to 4 XY Z (see Figure 5). By (1) we have

rABC s ¥ min
 
rABZ 1s; rBCX 1s; rCAY 1s

(
¡ min

 
rABZ s; rBCX s; rCAY s

(
;

so T is not a Thaiangulation.
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Solution 2. We will make use of the preliminary observations from Solution 1, together with
Lemma 1.

Arguing indirectly, we choose a convex polygon � with the least possible number of sides
such that some two ThaiangulationsT1 and T2 of � violate the statement (thus � has at least
�ve sides). Assume thatT1 and T2 share a diagonald splitting � into two smaller polygons � 1

and � 2. Since the problem statement holds for any of them, the induced Thaiangulations of
each of � i di�er by two triangles forming a parallelogram (the Thaiangulations induced on � i

by T1 and T2 may not coincide, otherwiseT1 and T2 would di�er by at most two triangles). But
both these parallelograms are contained inT1; this contradicts Lemma 1. Therefore,T1 and T2

share no diagonal. Hence they also share no triangle.
We consider two cases.

Case 1. Assume that some vertexB of � is an endpoint of some diagonal inT1, as well as an
endpoint of some diagonal inT2.

Let A and C be the vertices of � adjacent to B . Then T1 contains some trianglesABX
and BCY , while T2 contains some trianglesABX 1 and BCY 1. Here, some of the pointsX ,
X 1, Y , and Y 1 may coincide; however, in view of our assumption together with the fact that T1

and T2 share no triangle, all four trianglesABX , BCY , ABX 1, and BCY 1 are distinct.
SincerABX s � r BCY s � r ABX 1s � r BCY 1s, we haveXX 1 k AB and Y Y1 k BC. Now,

if X � Y , then X 1 and Y 1 lie on di�erent lines passing throughX and are distinct from that
point, so that X 1 � Y 1. In this case, we may switch the two Thaiangulations. So, hereafter we
assume thatX � Y.

In the convex pentagonABCY X we have either= BAX � = AXY ¡ 1800 or = XY C �
= Y CB ¡ 1800 (or both); due to the symmetry, we may assume that the �rst inequality holds.
Let r be the ray emerging fromX and co-directed with

ÝÝÑ
AB ; our inequality shows thatr points

to the interior of the pentagon (and thus to the interior of �). The refore, the ray opposite tor
points outside �, so X 1 lies on r ; moreover,X 1 lies on the \arc" CY of � not containing X .
So the segmentsXX 1 and Y B intersect (see Figure 6).

Let O be the intersection point of the raysr and BC. Since the trianglesABX 1 and BCY 1

have no common interior points,Y 1 must lie on the \arc" CX 1 which is situated inside the
triangle XBO . Therefore, the lineY Y1 meets two sides of4 XBO , none of which may beXB
(otherwise the diagonalsXB and Y Y1 would share a common point). ThusY Y1 intersectsBO,
which contradicts Y Y1 k BC.

X

A

B
C

Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0Y 0

X 0

Y

O

r

Figure 6

Case 2. In the remaining case, each vertex of � is an endpoint of a diagonal inat most one
of T1 and T2. On the other hand, a triangulation cannot contain two consecutive vertices with
no diagonals from each. Therefore, the vertices of � alternatinglyemerge diagonals inT1 and
in T2. In particular, � has an even number of sides.
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Next, we may choose �ve consecutive verticesA, B , C, D, and E of � in such a way that

= ABC � = BCD ¡ 1800 and = BCD � = CDE ¡ 1800: (2)

In order to do this, it su�ces to choose three consecutive vertices B, C, and D of � such that
the sum of their external angles is at most 1800. This is possible, since � has at least six sides.

A

B

C

D

E

X Y

Z

Figure 7

We may assume thatT1 has no diagonals fromB and D (and thus contains the trian-
gles ABC and CDE ), while T2 has no diagonals fromA, C, and E (and thus contains the
triangle BCD ). Now, sincerABC s � r BCD s � r CDE s, we haveAD k BC and BE k CD
(see Figure 7). By (2) this yields thatAD ¡ BC and BE ¡ CD. Let X � AC X BD and
Y � CE X BD ; then the inequalities above imply thatAX ¡ CX and EY ¡ CY.

Finally, T2 must also contain some triangleBDZ with Z � C; then the ray CZ lies in
the angle ACE . Since rBCD s � r BDZ s, the diagonal BD bisects CZ. Together with the
inequalities above, this yields thatZ lies inside the triangleACE (but Z is distinct from A
and E), which is impossible. The �nal contradiction.

Comment 2. Case 2 may also be accomplished with the use of Lemma 2. Indeed, since each
triangulation of an n-gon contains n � 2 triangles neither of which may contain three sides of �,
Lemma 2 yields that each Thaiangulation contains exactly two ears. But each vertex of � is a vertex
of an ear either in T1 or in T2, so � cannot have more than four vertices.
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Number Theory

N1. Determine all positive integersM for which the sequencea0; a1; a2; : : :, de�ned by
a0 � 2M � 1

2 and ak� 1 � ak takufor k � 0; 1; 2; : : :, contains at least one integer term.
(Luxembourg)

Answer. All integers M ¥ 2.

Solution 1. De�ne bk � 2ak for all k ¥ 0. Then

bk� 1 � 2ak� 1 � 2ak taku� bk

Z
bk

2

^
:

Sinceb0 is an integer, it follows that bk is an integer for allk ¥ 0.
Suppose that the sequencea0; a1; a2; : : : does not contain any integer term. Thenbk must

be an odd integer for allk ¥ 0, so that

bk� 1 � bk

Z
bk

2

^
�

bkpbk � 1q
2

: (1)

Hence

bk� 1 � 3 �
bkpbk � 1q

2
� 3 �

pbk � 3qpbk � 2q
2

(2)

for all k ¥ 0.
Suppose thatb0 � 3 ¡ 0. Then equation (2) yieldsbk � 3 ¡ 0 for all k ¥ 0. For eachk ¥ 0,

de�ne ck to be the highest power of 2 that dividesbk � 3. Sincebk � 3 is even for allk ¥ 0, the
number ck is positive for everyk ¥ 0.

Note that bk � 2 is an odd integer. Therefore, from equation (2), we have thatck� 1 � ck � 1.
Thus, the sequencec0; c1; c2; : : : of positive integers is strictly decreasing, a contradiction. So,
b0 � 3 ¤ 0, which impliesM � 1.

For M � 1, we can check that the sequence is constant withak � 3
2 for all k ¥ 0. Therefore,

the answer isM ¥ 2.

Solution 2. We provide an alternative way to showM � 1 once equation (1) has been
reached. We claim thatbk � 3 pmod 2mq for all k ¥ 0 and m ¥ 1. If this is true, then we
would havebk � 3 for all k ¥ 0 and henceM � 1.

To establish our claim, we proceed by induction onm. The base casebk � 3 pmod 2q is
true for all k ¥ 0 sincebk is odd. Now suppose thatbk � 3 pmod 2m q for all k ¥ 0. Hence
bk � 2mdk � 3 for some integerdk . We have

3 � bk� 1 � p 2mdk � 3qp2m� 1dk � 1q � 3 � 2m� 1dk � 3 pmod 2mq;

so that dk must be even. This implies thatbk � 3 pmod 2m� 1q, as required.

Comment. The reason the number 3 which appears in both solutions is important, is that it is a
nontrivial �xed point of the recurrence relation for bk .
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N2. Let a and b be positive integers such thata!b! is a multiple of a! � b!. Prove that
3a ¥ 2b� 2.

(United Kingdom)

Solution 1. If a ¡ b, we immediately get 3a ¥ 2b � 2. In the casea � b, the required
inequality is equivalent to a ¥ 2, which can be checked easily sincepa; bq � p 1; 1q does not
satisfy a! � b! | a!b!. We now assumea   b and denotec � b � a. The required inequality
becomesa ¥ 2c � 2.

Suppose, to the contrary, thata ¤ 2c� 1. De�ne M � b!
a! � p a � 1qpa � 2q � � � pa � cq. Since

a!� b! | a!b! implies 1� M | a!M , we obtain 1� M | a!. Note that we must havec   a; otherwise
1 � M ¡ a!, which is impossible. We observe thatc! | M sinceM is a product ofc consecutive
integers. Thus gcdp1 � M; c!q � 1, which implies

1 � M

�
�
�
�

a!
c!

� p c � 1qpc � 2q � � �a: (1)

If a ¤ 2c, then a!
c! is a product ofa � c ¤ c integers not exceedinga whereasM is a product of

c integers exceedinga. Therefore, 1� M ¡ a!
c! , which is a contradiction.

It remains to exclude the casea � 2c� 1. Sincea� 1 � 2pc� 1q, we havec� 1 | M . Hence,
we can deduce from (1) that 1 � M | pc � 2qpc � 3q � � �a. Now pc � 2qpc � 3q � � �a is a product
of a � c � 1 � c integers not exceedinga; thus it is smaller than 1� M . Again, we arrive at a
contradiction.

Comment 1. One may derive a weaker version of (1) and �nish the problem as follows. After
assuminga ¤ 2c � 1, we have

X
a
2

\
¤ c, so

X
a
2

\
! | M . Therefore,

1 � M

�
�
�
�

�Y a
2

]
� 1

	 �Y a
2

]
� 2

	
� � � a:

Observe that
�X

a
2

\
� 1

� �X
a
2

\
� 2

�
� � � a is a product of

P
a
2

T
integers not exceedinga. This leads to a

contradiction when a is even since
P

a
2

T
� a

2 ¤ c and M is a product of c integers exceedinga.
When a is odd, we can further deduce that 1� M |

�
a� 3

2

� �
a� 5

2

�
� � � a since

X
a
2

\
� 1 � a� 1

2

�
� a � 1.

Now
�

a� 3
2

� �
a� 5

2

�
� � � a is a product of a� 1

2 ¤ c numbers not exceedinga, and we get a contradiction.

Solution 2. As in Solution 1, we may assume thata   b and let c � b� a. Suppose, to the
contrary, that a ¤ 2c � 1. From a! � b! | a!b!, we have

N � 1 � p a � 1qpa � 2q � � � pa � cq
�
� pa � cq!;

which implies that all prime factors ofN are at mosta � c.
Let p be a prime factor ofN . If p ¤ c or p ¥ a � 1, then p divides one ofa � 1, . . . , a � c

which is impossible. Hencea ¥ p ¥ c � 1: Furthermore, we must have 2p ¡ a � c; otherwise,
a � 1 ¤ 2c � 2 ¤ 2p ¤ a � c so p | N � 1, again impossible. Thus, we havep P

�
a� c

2 ; a
�
, and

p2 - pa � cq! since 2p ¡ a � c. Therefore,p2 - N as well.
If a ¤ c � 2, then the interval

�
a� c

2 ; a
�

contains at most one integer and hence at most one
prime number, which has to bea. Sincep2 - N , we must haveN � p � a or N � 1, which is
absurd sinceN ¡ a ¥ 1. Thus, we havea ¥ c � 3, and soa� c� 1

2 ¥ c � 2. It follows that p lies
in the interval rc � 2; as.

Thus, every prime appearing in the prime factorization ofN lies in the interval rc� 2; as, and
its exponent is exactly 1. So we must haveN | pc� 2qpc� 3q � � �a. However,pc� 2qpc� 3q � � �a is
a product ofa� c� 1 ¤ c numbers not exceedinga, so it is less thanN . This is a contradiction.

Comment 2. The original problem statement also asks to determine when the equality 3a � 2b� 2
holds. It can be checked that the answer ispa; bq � p 2; 2q; p4; 5q.
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N3. Let m and n be positive integers such thatm ¡ n. De�ne xk � p m � kq{pn � kq for k �
1; 2; : : : ; n � 1. Prove that if all the numbersx1; x2; : : : ; xn� 1 are integers, thenx1x2 � � � xn� 1 � 1
is divisible by an odd prime.

(Austria)

Solution. Assume that x1; x2; : : : ; xn� 1 are integers. De�ne the integers

ak � xk � 1 �
m � k
n � k

� 1 �
m � n
n � k

¡ 0

for k � 1; 2; : : : ; n � 1.
Let P � x1x2 � � � xn� 1 � 1. We need to prove thatP is divisible by an odd prime, or in

other words, that P is not a power of 2. To this end, we investigate the powers of 2 dividing
the numbersak .

Let 2d be the largest power of 2 dividingm � n, and let 2c be the largest power of 2 not
exceeding 2n � 1. Then 2n � 1 ¤ 2c� 1 � 1, and son � 1 ¤ 2c. We conclude that 2c is one of the
numbersn � 1; n � 2; : : : ; 2n � 1, and that it is the only multiple of 2c appearing among these
numbers. Let ` be such that n � ` � 2c. Since m� n

n� ` is an integer, we haved ¥ c. Therefore,
2d� c� 1 - a` � m� n

n� ` , while 2d� c� 1 | ak for all k P t1; : : : ; n � 1u z t̀ u.
Computing modulo 2d� c� 1, we get

P � p a1 � 1qpa2 � 1q � � � pan� 1 � 1q � 1 � p a` � 1q �1n � 1 � a` � 0 pmod 2d� c� 1q:

Therefore, 2d� c� 1 - P.
On the other hand, for anyk P t1; : : : ; n � 1uz t̀ u, we have 2d� c� 1 | ak . SoP ¥ ak ¥ 2d� c� 1,

and it follows that P is not a power of 2.

Comment. Instead of attempting to show that P is not a power of 2, one may try to �nd an odd
factor of P (greater than 1) as follows:

From ak � m� n
n� k P Z¡ 0, we get that m � n is divisible by n � 1; n � 2; : : : ; 2n � 1, and thus

it is also divisible by their least common multiple L . So m � n � qL for some positive integerq;
hencexk � q � L

n� k � 1.
Then, sincen � 1 ¤ 2c � n � ` ¤ 2n � 1 ¤ 2c� 1 � 1, we have 2c | L , but 2c� 1 - L . So L

n� ` is odd,
while L

n� k is even fork � `. Computing modulo 2q yields

x1x2 � � � xn� 1 � 1 � p q � 1q �1n � 1 � q pmod 2qq:

Thus, x1x2 � � � xn� 1 � 1 � 2qr � q � qp2r � 1q for some integerr .
Since x1x2 � � � xn� 1 � 1 ¥ x1x2 � 1 ¥ pq � 1q2 � 1 ¡ q, we have r ¥ 1. This implies that

x1x2 � � � xn� 1 � 1 is divisible by an odd prime.
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N4. Suppose thata0; a1; : : : and b0; b1; : : : are two sequences of positive integers satisfying
a0; b0 ¥ 2 and

an� 1 � gcdpan ; bnq � 1; bn� 1 � lcmpan ; bnq � 1

for all n ¥ 0. Prove that the sequence (an ) is eventually periodic; in other words, there exist
integersN ¥ 0 and t ¡ 0 such that an� t � an for all n ¥ N .

(France)

Solution 1. Let sn � an � bn . Notice that if an | bn , then an� 1 � an � 1, bn� 1 � bn � 1 and
sn� 1 � sn . So, an increases by 1 andsn does not change until the �rst index is reached with
an - sn . De�ne

Wn �
 
m PZ¡ 0 : m ¥ an and m - sn

(
and wn � min Wn :

Claim 1. The sequencepwnq is non-increasing.
Proof. If an | bn then an� 1 � an � 1. Due to an | sn , we havean R Wn . Moreover sn� 1 � sn ;
therefore,Wn� 1 � Wn and wn� 1 � wn .

Otherwise, if an - bn , then an - sn , so an PWn and thus wn � an . We show that an PWn� 1;
this implies wn� 1 ¤ an � wn . By the de�nition of Wn� 1, we need thatan ¥ an� 1 and an - sn� 1.
The �rst relation holds because of gcdpan ; bnq   an . For the second relation, observe that in
sn� 1 � gcdpan ; bnq � lcmpan ; bnq, the second term is divisible byan , but the �rst term is not.
So an - sn� 1; that completes the proof of the claim. l

Let w � min
n

wn and let N be an index with w � wN . Due to Claim 1, we havewn � w for

all n ¥ N .

Let gn � gcdpw; snq. As we have seen, starting from an arbitrary indexn ¥ N , the sequence
an ; an� 1; : : : increases by 1 until it reachesw, which is the �rst value not dividing sn ; then it
drops to gcdpw; snq � 1 � gn � 1.
Claim 2. The sequencepgnq is constant forn ¥ N .
Proof. If an | bn , then sn� 1 � sn and hencegn� 1 � gn . Otherwise we havean � w,

gcdpan ; bnq � gcdpan ; snq � gcdpw; snq � gn ;

sn� 1 � gcdpan ; bnq � lcmpan ; bnq � gn �
anbn

gn
� gn �

wpsn � wq
gn

; (1)

and gn� 1 � gcdpw; sn� 1q � gcd
�

w; gn �
sn � w

gn
w



� gcdpw; gnq � gn : l

Let g � gN . We have proved that the sequencepanq eventually repeats the following cycle:

g � 1 ÞÑg � 2 ÞÑ: : : ÞÑw ÞÑg � 1:

Solution 2. By Claim 1 in the �rst solution, we have an ¤ wn ¤ w0, so the sequencepanq is
bounded, and hence it has only �nitely many values.

Let M � lcmpa1; a2; : : :q, and consider the sequencebn modulo M . Let rn be the remainder
of bn , divided by M . For every indexn, sincean | M | bn � rn , we have gcdpan ; bnq � gcdpan ; rnq,
and therefore

an� 1 � gcdpan ; rnq � 1:

Moreover,

rn� 1 � bn� 1 � lcmpan ; bnq � 1 �
an

gcdpan ; bnq
bn � 1

�
an

gcdpan ; rnq
bn � 1 �

an

gcdpan ; rnq
rn � 1 pmod M q:
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Hence, the pairpan ; rnquniquely determines the pairpan� 1; rn� 1q. Since there are �nitely many
possible pairs, the sequence of pairspan ; rnq is eventually periodic; in particular, the sequence
panq is eventually periodic.

Comment. We show that there are only four possibilities for g and w (as de�ned in Solution 1),
namely

pw; gq P
 
p2; 1q; p3; 1q; p4; 2q; p5; 1q

(
: (2)

This means that the sequencepanq eventually repeats one of the following cycles:

p2q; p2; 3q; p3; 4q; or p2; 3; 4; 5q: (3)

Using the notation of Solution 1, for n ¥ N the sequencepan q has a cyclepg � 1; g � 2; : : : ; wq
such that g � gcdpw; sn q. By the observations in the proof of Claim 2, the numbersg� 1; : : : ; w � 1 all
divide sn ; so the numberL � lcmpg � 1; g � 2; : : : ; w � 1q also dividessn . Moreover, g also dividesw.

Now choose anyn ¥ N such that an � w. By (1), we have

sn� 1 � g �
wpsn � wq

g
� sn �

w
g

�
w2 � g2

g
:

SinceL divides both sn and sn� 1, it also divides the number T � w2 � g2

g .
Suppose �rst that w ¥ 6, which yields g � 1 ¤ w

2 � 1 ¤ w � 2. Then pw � 2qpw � 1q |L | T, so we
have either w2 � g2 ¥ 2pw � 1qpw � 2q, or g � 1 and w2 � g2 � p w � 1qpw � 2q. In the former case we
get pw � 1qpw � 5q � p g2 � 1q ¤ 0 which is false by our assumption. The latter equation rewrites as
3w � 3, sow � 1, which is also impossible.

Now we are left with the cases whenw ¤ 5 and g | w. The casepw; gq � p 4; 1q violates the
condition L | w2 � g2

g ; all other such pairs are listed in (2).

In the table below, for each pair pw; gq, we provide possible sequencespanq and pbnq. That shows
that the cycles shown in (3) are indeed possible.

w � 2 g � 1 an � 2 bn � 2 � 2n � 1
w � 3 g � 1 pa2k ; a2k� 1q � p 2; 3q pb2k ; b2k� 1q � p 6 � 3k � 2; 6 � 3k � 1q
w � 4 g � 2 pa2k ; a2k� 1q � p 3; 4q pb2k ; b2k� 1q � p 12� 2k � 3; 12 � 2k � 2q
w � 5 g � 1 pa4k ; : : : ; a4k� 3q � p 2; 3; 4; 5q pb4k ; : : : ; b4k� 3q � p 6 � 5k � 4; : : : ; 6 � 5k � 1q
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N5. Determine all triples pa; b; cq of positive integers for whichab� c, bc� a, and ca� b are
powers of 2.

Explanation: A power of2 is an integer of the form2n , wheren denotes some nonnegative
integer.

(Serbia)

Answer. There are sixteen such triples, namelyp2; 2; 2q, the three permutations ofp2; 2; 3q,
and the six permutations of each ofp2; 6; 11qand p3; 5; 7q.

Solution 1. It can easily be veri�ed that these sixteen triples are as required. Now let pa; b; cq
be any triple with the desired property. If we would havea � 1, then both b� c and c� b were
powers of 2, which is impossible since their sum is zero; because of symmetry, this argument
showsa; b; c¥ 2.

Case 1. Amonga, b, and c there are at least two equal numbers.

Without loss of generality we may suppose thata � b. Then a2 � c and apc � 1q are powers
of 2. The latter tells us that actually a and c � 1 are powers of 2. So there are nonnegative
integers � and 
 with a � 2� and c � 2
 � 1. Sincea2 � c � 22� � 2
 � 1 is a power of 2 and
thus incongruent to � 1 modulo 4, we must have
 ¤ 1. Moreover, each of the terms 22� � 2
and 22� � 3 can only be a power of 2 if� � 1. It follows that the triple pa; b; cq is either p2; 2; 2q
or p2; 2; 3q.

Case 2. The numbersa, b, and c are distinct.

Due to symmetry we may suppose that

2 ¤ a   b   c : (1)

We are to prove that the triple pa; b; cq is either p2; 6; 11q or p3; 5; 7q. By our hypothesis, there
exist three nonnegative integers� , � , and 
 such that

bc� a � 2� ; (2)

ac � b � 2� ; (3)

and ab� c � 2
 : (4)

Evidently we have
� ¡ � ¡ 
 : (5)

Depending on how largea is, we divide the argument into two further cases.

Case 2.1. a � 2.

We �rst prove that 
 � 0. Assume for the sake of contradiction that
 ¡ 0. Then c is even
by (4) and, similarly, b is even by (5) and (3). So the left-hand side of (2) is congruent to 2
modulo 4, which is only possible ifbc� 4. As this contradicts (1), we have thereby shown that

 � 0, i.e., that c � 2b� 1.

Now (3) yields 3b� 2 � 2� . Due to b ¡ 2 this is only possible if� ¥ 4. If � � 4, then we
get b � 6 and c � 2 � 6 � 1 � 11, which is a solution. It remains to deal with the case� ¥ 5.
Now (2) implies

9 � 2� � 9bp2b� 1q � 18 � p 3b� 2qp6b� 1q � 16 � 2� p2� � 1 � 5q � 16;

and by � ¥ 5 the right-hand side is not divisible by 32. Thus� ¤ 4 and we get a contradiction
to (5).
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Case 2.2. a ¥ 3.
Pick an integer# P t� 1; � 1u such that c � # is not divisible by 4. Now

2� � # � 2� � p bc� a#2q � #pca� bq � p b� a#qpc � #q

is divisible by 2� and, consequently,b� a# is divisible by 2� � 1. On the other hand, 2� � ac� b ¡
pa � 1qc ¥ 2c implies in view of (1) that a and b are smaller than 2� � 1. All this is only possible
if # � 1 and a � b � 2� � 1. Now (3) yields

ac� b � 2pa � bq; (6)

whence 4b ¡ a � 3b � apc � 1q ¥ ab, which in turn yields a � 3.
So (6) simpli�es to c � b� 2 and (2) tells us that bpb� 2q � 3 � p b� 1qpb� 3q is a power

of 2. Consequently, the factorsb� 1 andb� 3 are powers of 2 themselves. Since their di�erence
is 4, this is only possible ifb � 5 and thusc � 7. Thereby the solution is complete.

Solution 2. As in the beginning of the �rst solution, we observe thata; b; c¥ 2. Depending
on the parities ofa, b, and c we distinguish three cases.

Case 1. The numbersa, b, and c are even.
Let 2A , 2B , and 2C be the largest powers of 2 dividinga, b, and c respectively. We may assume
without loss of generality that 1 ¤ A ¤ B ¤ C. Now 2B is the highest power of 2 dividing
ac� b, whenceac� b � 2B ¤ b. Similarly, we deducebc� a � 2A ¤ a. Adding both estimates
we get pa � bqc ¤ 2pa � bq, whencec ¤ 2. Soc � 2 and thus A � B � C � 1; moreover, we
must have had equality throughout, i.e.,a � 2A � 2 and b � 2B � 2. We have thereby found
the solution pa; b; cq � p 2; 2; 2q.

Case 2. The numbersa, b, and c are odd.
If any two of these numbers are equal, saya � b, then ac � b � apc � 1q has a nontrivial odd
divisor and cannot be a power of 2. Hencea, b, and c are distinct. So we may assume without
loss of generality thata   b   c.

Let � and � denote the nonnegative integers for whichbc� a � 2� and ac � b � 2� hold.
Clearly, we have� ¡ � , and thus 2� divides

a � 2� � b� 2� � apbc� aq � bpac� bq � b2 � a2 � p b� aqpb� aq:

Sincea is odd, it is not possible that both factorsb� a and b� a are divisible by 4. Consequently,
one of them has to be a multiple of 2� � 1. Hence one of the numbers 2pb� aq and 2pb� aq is
divisible by 2� and in either case we have

ac� b � 2� ¤ 2pa � bq: (7)

This in turn yields pa � 1qb   ac � b   4b and thus a � 3 (recall that a is odd and larger
than 1). Substituting this back into (7) we learnc ¤ b� 2. But due to the parity b   c entails
that b� 2 ¤ c holds as well. So we getc � b� 2 and frombc� a � p b� 1qpb� 3qbeing a power
of 2 it follows that b � 5 and c � 7.

Case 3. Amonga, b, and c both parities occur.
Without loss of generality, we suppose thatc is odd and that a ¤ b. We are to show that
pa; b; cq is either p2; 2; 3q or p2; 6; 11q. As at least one ofa and b is even, the expressionab� c
is odd; since it is also a power of 2, we obtain

ab� c � 1: (8)

If a � b, then c � a2 � 1, and fromac� b � apa2 � 2qbeing a power of 2 it follows that botha
and a2 � 2 are powers of 2, whencea � 2. This gives rise to the solutionp2; 2; 3q.
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We may supposea   b from now on. As usual, we let� ¡ � denote the integers satisfying

2� � bc� a and 2� � ac � b : (9)

If � � 0 it would follow that ac� b � ab� c � 1 and hence thatb � c � 1, which is absurd. So
� and � are positive and consequentlya and b are even. Substitutingc � ab� 1 into (9) we
obtain

2� � ab2 � p a � bq; (10)

and 2� � a2b� p a � bq: (11)

The addition of both equation yields 2� � 2� � p ab� 2qpa � bq. Now ab� 2 is even but not
divisible by 4, so the highest power of 2 dividinga � b is 2� � 1. For this reason, the equations
(10) and (11) show that the highest powers of 2 dividing either of the numbersab2 and a2b is
likewise 2� � 1. Thus there is an integer� ¥ 1 together with odd integersA, B , and C such that
a � 2� A, b � 2� B, a � b � 23� C, and � � 1 � 3� .

Notice that A � B � 22� C ¥ 4C. Moreover, (11) entailsA2B � C � 2. Thus 8 �
4A2B � 4C ¥ 4A2B � A � B ¥ A2p3B � 1q. SinceA and B are odd with A   B , this is only
possible ifA � 1 and B � 3. Finally, one may concludeC � 1, � � 1, a � 2, b � 6, and
c � 11. We have thereby found the triplep2; 6; 11q. This completes the discussion of the third
case, and hence the solution.

Comment. In both solutions, there are many alternative ways to proceed in each of its cases. Here
we present a di�erent treatment of the part \ a   b" of Case 3 in Solution 2, assuming that (8) and (9)
have already been written down:

Put d � gcdpa; bq and de�ne the integers p and q by a � dp and b � dq; notice that p   q and
gcdpp; qq � 1. Now (8) implies c � d2pq� 1 and thus we have

2� � dpd2pq2 � p � qq

and 2� � dpd2p2q � p � qq: (12)

Now 2� divides 2� � 2� � d3pqpq � pq and, asp and q are easily seen to be coprime tod2p2q � p � q,
it follows that

pd2p2q � p � qq |d2pq � pq: (13)

In particular, we have d2p2q� p � q ¤ d2pq � pq, i.e., d2pp2q� p � qq ¤ p � q. As p2q� p � q ¡ 0, this
may be weakened top2q � p � q ¤ p � q. Hencep2q ¤ 2q, which is only possible ifp � 1.

Going back to (13), we get
pd2q � q � 1q |d2pq � 1q: (14)

Now 2pd2q � q � 1q ¤ d2pq � 1q would entail d2pq � 1q ¤ 2pq � 1q and thus d � 1. But this would
tell us that a � dp � 1, which is absurd. This argument proves 2pd2q � q � 1q ¡ d2pq � 1q and in the
light of (14) it follows that d2q� q � 1 � d2pq� 1q, i.e., q � d2 � 1. Plugging this together with p � 1
into (12) we infer 2� � d3pd2 � 2q. Henced and d2 � 2 are powers of 2. Consequently,d � 2, q � 3,
a � 2, b � 6, and c � 11, as desired.
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N6. Let Z¡ 0 denote the set of positive integers. Consider a functionf : Z¡ 0 Ñ Z¡ 0. For
any m; n P Z¡ 0 we write f npmq � f pf p: : : flooomooon

n

pmq: : :qq. Suppose thatf has the following two

properties:

piq If m; n PZ¡ 0, then
f npmq � m

n
PZ¡ 0;

pii q The set Z¡ 0 z tf pnq |n PZ¡ 0u is �nite.

Prove that the sequencef p1q � 1; f p2q � 2; f p3q � 3; : : : is periodic.

(Singapore)

Solution. We split the solution into three steps. In the �rst of them, we show that the function
f is injective and explain how this leads to a useful visualization off . Then comes the second
step, in which most of the work happens: its goal is to show that forany n PZ¡ 0 the sequence
n; f pnq; f 2pnq; : : : is an arithmetic progression. Finally, in the third step we put everything
together, thus solving the problem.

Step 1. We commence by checking thatf is injective. For this purpose, we consider any
m; k PZ¡ 0 with f pmq � f pkq. By piq, every positive integern has the property that

k � m
n

�
f npmq � m

n
�

f npkq � k
n

is a di�erence of two integers and thus integral as well. But forn � | k � m| � 1 this is only
possible ifk � m. Thereby, the injectivity of f is established.

Now recall that due to condition pii q there are �nitely many positive integers a1; : : : ; ak

such that Z¡ 0 is the disjoint union of t a1; : : : ; aku and t f pnq |n PZ¡ 0u. Notice that by plugging
n � 1 into condition piq we get f pmq ¡ m for all m PZ¡ 0.

We contend that every positive integern may be expressed uniquely in the formn � f j pai q
for some j ¥ 0 and i P t1; : : : ; ku. The uniqueness follows from the injectivity off . The
existence can be proved by induction onn in the following way. If n P ta1; : : : ; aku, then
we may take j � 0; otherwise there is somen1   n with f pn1q � n to which the induction
hypothesis may be applied.

The result of the previous paragraph means that every positive integer appears exactly once
in the following in�nite picture, henceforth referred to as \the Table":

a1 f pa1q f 2pa1q f 3pa1q : : :
a2 f pa2q f 2pa2q f 3pa2q : : :
...

...
...

...
ak f pakq f 2pakq f 3pakq : : :

The Table

Step 2. Our next goal is to prove that each row of the Table is an arithmetic progression.
Assume contrariwise that the numbert of rows which are arithmetic progressions would satisfy
0 ¤ t   k. By permuting the rows if necessary we may suppose that preciselythe �rst t rows
are arithmetic progressions, say with stepsT1; : : : ; Tt . Our plan is to �nd a further row that
is \not too sparse" in an asymptotic sense, and then to prove thatsuch a row has to be an
arithmetic progression as well.

Let us write T � lcmpT1; T2; : : : ; Ttq and A � maxt a1; a2; : : : ; atu if t ¡ 0; and T � 1 and
A � 0 if t � 0. For every integern ¥ A, the interval � n � r n � 1; n � Ts contains exactlyT{Ti
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elements of thei th row (1 ¤ i ¤ t). Therefore, the number of elements from the lastpk � tq
rows of the Table contained in �n does not depend onn ¥ A. It is not possible that none
of these intervals � n contains an element from thek � t last rows, because in�nitely many
numbers appear in these rows. It follows that for eachn ¥ A the interval � n contains at least
one member from these rows.

This yields that for every positive integerd, the interval
�
A � 1; A �p d� 1qpk � tqTscontains

at least pd � 1qpk � tqelements from the lastk � t rows; therefore, there exists an indexx with
t � 1 ¤ x ¤ k, possibly depending ond, such that our interval contains at leastd � 1 elements
from the xth row. In this situation we have

f dpaxq ¤ A � p d � 1qpk � tqT :

Finally, since there are �nitely many possibilities forx, there exists an indexx ¥ t � 1 such
that the set

X �
 
d PZ¡ 0

�
� f dpaxq ¤ A � p d � 1qpk � tqT

(

is in�nite. Thereby we have found the \dense row" promised above.

By assumptionpiq, for every d PX the number

� d �
f dpaxq � ax

d

is a positive integer not exceeding

A � p d � 1qpk � tqT
d

¤
Ad � 2dpk � tqT

d
� A � 2pk � tqT :

This leaves us with �nitely many choices for� d, which means that there exists a numberTx

such that the set
Y �

 
d PX

�
� � d � Tx

(

is in�nite. Notice that we have f dpaxq � ax � d � Tx for all d PY.

Now we are prepared to prove that the numbers in thexth row form an arithmetic progres-
sion, thus coming to a contradiction with our assumption. Let us �x any positive integer j .
Since the setY is in�nite, we can choose a numbery PY such that y � j ¡

�
�f j paxq�p ax � jT xq

�
�.

Notice that both numbers

f ypaxq � f j paxq � f y� j
�
f j paxq

�
� f j paxq and f ypaxq � p ax � jT xq � p y � j qTx

are divisible by y � j . Thus, the di�erence between these numbers is also divisible byy � j .
Since the absolute value of this di�erence is less thany � j , it has to vanish, so we getf j paxq �
ax � j � Tx .

Hence, it is indeed true that all rows of the Table are arithmetic progressions.

Step 3.Keeping the above notation in force, we denote the step of thei th row of the table byTi .
Now we claim that we havef pnq � n � f pn � Tq � p n � Tq for all n PZ¡ 0, where

T � lcmpT1; : : : ; Tkq:

To see this, let anyn P Z¡ 0 be given and denote the index of the row in which it appears in
the Table by i . Then we havef j pnq � n � j � Ti for all j PZ¡ 0, and thus indeed

f pn � Tq � f pnq � f 1� T {Ti pnq � f pnq � p n � T � Ti q � p n � Ti q � T :

This concludes the solution.
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Comment 1. There are some alternative ways to complete the second part once the index x
corresponding to a \dense row" is found. For instance, one may show that for some integerT �

x the set

Y � �
 
j PZ¡ 0

�
� f j � 1paxq � f j paxq � T �

x

(

is in�nite, and then one may conclude with a similar divisibi lity argument.

Comment 2. It may be checked that, conversely, any way to �ll out the Tabl e with �nitely many
arithmetic progressions so that each positive integer appears exactly once, gives rise to a functionf
satisfying the two conditions mentioned in the problem. For example, we may arrange the positive
integers as follows:

2 4 6 8 10 : : :
1 5 9 13 17 : : :
3 7 11 15 19 : : :

This corresponds to the function

f pnq �

#
n � 2 if n is even;

n � 4 if n is odd:

As this example shows, it is not true that the function n ÞÑf pnq � n has to be constant.
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N7. Let Z¡ 0 denote the set of positive integers. For any positive integerk, a function
f : Z¡ 0 Ñ Z¡ 0 is calledk-good if gcd

�
f pmq � n; f pnq � m

�
¤ k for all m � n. Find all k such

that there exists ak-good function.
(Canada)

Answer. k ¥ 2.

Solution 1. For any function f : Z¡ 0 Ñ Z¡ 0, let Gf pm; nq � gcd
�
f pmq � n; f pnq � m

�
. Note

that a k-good function is alsopk � 1q-good for any positive integerk. Hence, it su�ces to show
that there does not exist a 1-good function and that there existsa 2-good function.

We �rst show that there is no 1-good function. Suppose that there exists a functionf such
that Gf pm; nq � 1 for all m � n. Now, if there are two distinct even numbersm and n such
that f pmq and f pnq are both even, then 2| Gf pm; nq, a contradiction. A similar argument
holds if there are two distinct odd numbersm and n such that f pmq and f pnq are both odd.
Hence we can choose an evenm and an oddn such that f pmq is odd andf pnq is even. This
also implies that 2| Gf pm; nq, a contradiction.

We now construct a 2-good function. De�nef pnq � 2gpnq� 1 � n � 1, whereg is de�ned
recursively bygp1q � 1 and gpn � 1q � p 2gpnq� 1q!.

For any positive integersm ¡ n, set

A � f pmq � n � 2gpmq� 1 � m � n � 1; B � f pnq � m � 2gpnq� 1 � n � m � 1:

We need to show that gcdpA; B q ¤ 2. First, note that A � B � 2gpmq� 1 � 2gpnq� 1 � 2 is not
divisible by 4, so that 4- gcdpA; B q. Now we suppose that there is an odd primep for which
p | gcdpA; B q and derive a contradiction.

We �rst claim that 2 gpm� 1q� 1 ¥ B. This is a rather weak bound; one way to prove it is as fol-
lows. Observe thatgpk � 1q ¡ gpkqand hence 2gpk� 1q� 1 ¥ 2gpkq� 1 � 1 for every positive integerk.
By repeatedly applying this inequality, we obtain 2gpm� 1q� 1 ¥ 2gpnq� 1 � p m � 1q � n � B .

Now, sincep | B , we havep � 1   B ¤ 2gpm� 1q� 1, so that p � 1 | p2gpm� 1q� 1q! � gpmq.
Hence 2gpmq � 1 pmod pq, which yields A � B � 2gpnq� 1 pmod pq. However, sincep | A � B ,
this implies that p � 2, a contradiction.

Solution 2. We provide an alternative construction of a 2-good functionf .

Let P be the set consisting of 4 and all odd primes. For everyp PP, we say that a number
a P t0; 1; : : : ; p � 1u is p-useful if a � � a pmod pq. Note that a residue modulop which is
neither 0 nor 2 isp-useful (the latter is needed only whenp � 4).

We will construct f recursively; in some steps, we will also de�ne ap-useful numberap.
After the mth step, the construction will satisfy the following conditions:

(i ) The values off pnqhave already been de�ned for alln ¤ m, and p-useful numbersap have
already been de�ned for allp ¤ m � 2;

(ii ) If n ¤ m and p ¤ m � 2, then f pnq � n � ap pmod pq;

(iii ) gcd
�
f pn1q � n2; f pn2q � n1

�
¤ 2 for all n1   n2 ¤ m.

If these conditions are satis�ed, thenf will be a 2-good function.

Step 1. Set f p1q � 1 and a3 � 1. Clearly, all the conditions are satis�ed.

Stepm, for m ¥ 2. We need to determinef pmq and, if m � 2 PP, the number am� 2.

De�ning f pmq. Let X m � t p P P : p | f pnq � m for somen   mu. We will determine
f pmq mod p for all p PX m and then choosef pmq using the Chinese Remainder Theorem.
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Take any p P X m . If p ¤ m � 1, then we de�ne f pmq � � ap � m pmod pq. Otherwise, if
p ¥ m � 2, then we de�nef pmq � 0 pmod pq.

De�ning am� 2. Now let p � m � 2 and suppose thatp P P. We chooseap to be a residue
modulo p that is not congruent to 0, 2, orf pnq � n for any n ¤ m. Sincef p1q � 1 � 2, there
are at mostm � 1   p residues to avoid, so we can always choose a remaining residue.

We �rst check that ( ii ) is satis�ed. We only need to check it ifp � m � 2 or n � m. In the
former case, we havef pnq � n � ap pmod pq by construction. In the latter case, ifn � m and
p ¤ m � 1, then we havef pmq � m � � ap � ap pmod pq, where we make use of the fact that
ap is p-useful.

Now we check that (iii ) holds. Suppose, to the contrary, thatp | gcd
�
f pnq � m; f pmq � n

�

for somen   m. Then p PX m and p | f pmq� n. If p ¥ m � 2, then 0� f pmq� n � n pmod pq,
which is impossible sincen   m   p.

Otherwise, if p ¤ m � 1, then

0 �
�
f pmq � n

�
�

�
f pnq � m

�
�

�
f pnq � n

�
�

�
f pmq � m

�
�

�
f pnq � n

�
� ap pmod pq:

This implies that f pnq � n � ap pmod pq, a contradiction with (ii ).

Comment 1. For any p P P, we may also de�ne ap at step m for an arbitrary m ¤ p � 2. The
construction will work as long as we de�ne a �nite number of ap at each step.

Comment 2. When attempting to construct a 2-good function f recursively, the following way
seems natural. Start with setting f p1q � 1. Next, for each integerm ¡ 1, introduce the set X m like
in Solution 2 and de�ne f pmq so as to satisfy

f pmq � f pm � pq pmod pq for all p PX m with p   m; and

f pmq � 0 pmod pq for all p PX m with p ¥ m.

This construction might seem to work. Indeed, consider a �xed p P P, and suppose that p
divides gcd

�
f pnq � m; f pmq � n

�
for some n   m. Choose suchm and n so that maxpm; nq is

minimal. Then p PX m . We can check that p   m, so that the construction implies that p di-
vides gcd

�
f pnq � p m � pq; f pm � pq � n

�
. Since maxpn; m � pq   maxpm; nq, this almost leads to a

contradiction|the only trouble is the possibility that n � m � p. However, this 
aw may happen to
be not so easy to �x.

We will present one possible way to repair this argument in the next comment.

Comment 3. There are many recursive constructions for a 2-good function f . Here we sketch one
general approach which may be speci�ed in di�erent ways. For convenience, we denote byZp the set
of residues modulop; all operations on elements ofZp are also performed modulop.

The general structure is the same as in Solution 2, i.e. usingthe Chinese Remainder Theorem to
successively determinef pmq. But instead of designating a common \safe" residueap for future steps,
we act as follows.

For every p P P, in some step of the process we de�nep subsetsB p1q
p ; B p2q

p ; : : : ; B ppq
p € Zp. The

meaning of these sets is that

f pmq � m should be congruent to some element inB pi q
p wheneverm � i pmod pq for i P Zp. (1)

Moreover, in every such subset we specify asafe element bpi q
p P B pi q

p . The meaning now is that in
future steps, it is safe to setf pmq � m � bpi q

p pmod pq wheneverm � i pmod pq. In view of (1), this
safety will follow from the condition that p - gcd

�
bpi q

p � p j � iq; cpj q � p j � iq
�

for all j P Zp and all

cpj q P B pj q
p . In turn, this condition can be rewritten as

� bpi q
p RB pj q

p ; where j � i � bpi q
p pmod pq: (2)
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The construction in Solution 2 is equivalent to setting bpi q
p � � ap and B pi q

p � Zp z tapu for all i .
However, there are di�erent, more technical speci�cations of our approach.

One may view the (incomplete) construction in Comment 2 as de�ning B pi q
p and bpi q

p at step p � 1
by setting B p0q

p �
 
bp0q

p
(

� t 0u and B pi q
p �

 
bpi q

p
(

� t f piq � i mod pu for every i � 1; 2; : : : ; p � 1.
However, this construction violates (2) as soon as some number of the form f piq � i is divisible by
somep with i � 2 ¤ p P P, since then� bpi q

p � bpi q
p PB pi q

p .
Here is one possible way to repair this construction. For allp PP, we de�ne the setsB pi q

p and the
elementsbpi q

p at step pp� 2qas follows. SetB p1q
p �

 
bp1q

p
(

� t 2u and B p� 1q
p � B p0q

p �
 
bp� 1q

p
(

�
 
bp0q

p
(

�

t� 1u. Next, for all i � 2; : : : ; p � 2, de�ne B pi q
p � t i; f piq � i mod pu and bpi q

p � i . One may see that
these de�nitions agree with both (1) and (2).
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N8. For every positive integern with prime factorization n �
± k

i � 1 p� i
i , de�ne

f pnq �
¸

i : pi ¡ 10100

� i :

That is, f pnq is the number of prime factors ofn greater than 10100, counted with multiplicity.
Find all strictly increasing functions f : Z Ñ Z such that

f
�
f paq � f pbq

�
¤ f pa � bq for all integersa and b with a ¡ b. (1)

(Brazil)

Answer. f pxq � ax � b, whereb is an arbitrary integer, anda is an arbitrary positive integer
with f paq � 0.

Solution. A straightforward check shows that all the functions listed in the answer satisfy the
problem condition. It remains to show the converse.

Assume that f is a function satisfying the problem condition. Notice that the function
gpxq � f pxq � f p0qalso satis�es this condition. Replacingf by g, we assume from now on that
f p0q � 0; then f pnq ¡ 0 for any positive integern. Thus, we aim to prove that there exists a
positive integera with f paq � 0 such that f pnq � an for all n PZ.

We start by introducing some notation. SetN � 10100. We say that a prime p is large
if p ¡ N , and p is small otherwise; let S be the set of all small primes. Next, we say that
a positive integer islarge or small if all its prime factors are such (thus, the number 1 is the
unique number which is both large and small). For a positive integerk, we denote the greatest
large divisor of k and the greatest small divisor ofk by Lpkq and Spkq, respectively; thus,
k � LpkqSpkq.

We split the proof into three steps.

Step 1. We prove that for every largek, we havek | f paq � f pbq ðñ k | a � b. In other
words, L

�
f paq � f pbq

�
� Lpa � bq for all integers a and b with a ¡ b.

We use induction onk. The base casek � 1 is trivial. For the induction step, assume that
k0 is a large number, and that the statement holds for all large numbers k with k   k0.

Claim 1. For any integers x and y with 0   x � y   k0, the number k0 does not divide
f pxq � f pyq.

Proof. Assume, to the contrary, that k0 | f pxq � f pyq. Let ` � Lpx � yq; then ` ¤ x � y   k0.
By the induction hypothesis, ` | f pxq � f pyq, and thus lcmpk0; `q | f pxq � f pyq. Notice that
lcmpk0; `q is large, and lcmpk0; `q ¥ k0 ¡ `. But then

f
�
f pxq � f pyq

�
¥ f

�
lcmpk0; `q

�
¡ f p̀ q � f px � yq;

which is impossible. l

Now we complete the induction step. By Claim 1, for every integera each of the sequences

f paq; f pa � 1q; : : : ; f pa � k0 � 1q and f pa � 1q; f pa � 2q; : : : ; f pa � k0q

forms a complete residue system modulok0. This yields f paq � f pa � k0q pmod k0q. Thus,
f paq � f pbq pmod k0q whenevera � b pmod k0q.

Finally, if a � b pmod k0q then there exists an integerb1 such that b1 � b pmod k0q and
|a � b1|   k0. Then f pbq � f pb1q � f paq pmod k0q. The induction step is proved.

Step 2. We prove that for some small integera there exist in�nitely many integersn such that
f pnq � an. In other words, f is linear on some in�nite set.

We start with the following general statement.
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Claim 2. There exists a constantc such that f ptq   ct for every positive integert ¡ N .

Proof. Let d be the product of all small primes, and let� be a positive integer such that
2� ¡ f pN q. Then, for every p P S the numbers f p0q; f p1q; : : : ; f pN q are distinct modulo p� .
Set P � d� and c � P � f pN q.

Choose any integert ¡ N . Due to the choice of� , for every p PS there exists at most one
nonnegative integeri ¤ N with p� | f ptq � f piq. Since|S|   N , we can choose a nonnegative
integer j ¤ N such that p� - f ptq � f pj q for all p PS. Therefore,S

�
f ptq � f pj q

�
  P.

On the other hand, Step 1 shows thatL
�
f ptq � f pj q

�
� Lpt � j q ¤ t � j . Since 0¤ j ¤ N ,

this yields

f ptq � f pj q � L
�
f ptq � f pj q

�
� S

�
f ptq � f pj q

�
  f pN q � p t � j qP ¤

�
P � f pN q

�
t � ct: l

Now let T be the set of large primes. For everyt P T , Step 1 impliesL
�
f ptq

�
� t, so the

ratio f ptq{t is an integer. Now Claim 2 leaves us with only �nitely many choices for thisratio,
which means that there exists an in�nite subsetT 1 „ T and a positive integera such that
f ptq � at for all t PT 1, as required.

SinceLptq � L
�
f ptq

�
� LpaqLptq for all t PT 1, we getLpaq � 1, so the numbera is small.

Step 3. We show thatf pxq � ax for all x PZ.

Let Ri �
 
x PZ : x � i pmod N !q

(
denote the residue class ofi modulo N !.

Claim 3. Assume that for somer , there are in�nitely many n PRr such that f pnq � an. Then
f pxq � ax for all x PRr � 1.

Proof. Choose anyx P Rr � 1. By our assumption, we can selectn P Rr such that f pnq � an
and |n � x| ¡

�
�f pxq � ax

�
�. Sincen � x � r � p r � 1q � � 1 pmod N !q, the number |n � x| is

large. Therefore, by Step 1 we havef pxq � f pnq � an � ax pmod n � xq, son � x | f pxq � ax.
Due to the choice ofn, this yields f pxq � ax. l

To complete Step 3, notice that the setT 1 found in Step 2 contains in�nitely many elements
of some residue classRi . Applying Claim 3, we successively obtain thatf pxq � ax for all
x PRi � 1; Ri � 2; : : : ; Ri � N ! � Ri . This �nishes the solution.

Comment 1. As the proposer also mentions, one may also consider the version of the problem where
the condition (1) is replaced by the condition that L

�
f paq � f pbq

�
� Lpa � bq for all integers a and b

with a ¡ b. This allows to remove of Step 1 from the solution.

Comment 2. Step 2 is the main step of the solution. We sketch several di�erent approaches allowing
to perform this step using statements which are weaker than Claim 2.

Approach 1. Let us again denote the product of all small primes byd. We focus on the valuesf pdi q,
i ¥ 0. In view of Step 1, we haveL

�
f pdi q � f pdkq

�
� Lpdi � dkq � di � k � 1 for all i ¡ k ¥ 0.

Acting similarly to the beginning of the proof of Claim 2, one may choose a number� ¥ 0 such
that the residues of the numbersf pdi q, i � 0; 1; : : : ; N , are distinct modulo p� for each p P S. Then,
for every i ¡ N , there exists an exponentk � kpiq ¤ N such that S

�
f pdi q � f pdkq

�
  P � d� .

Since there are only �nitely many options for kpiq, as well as for the corresponding numbers
S

�
f pdi q � f pdkq

�
, there exists an in�nite set I of exponents i ¡ N such that kpiq attains the same

value k0 for all i P I , and such that, moreover, S
�
f pdi q � f pdk0 q

�
attains the same values0 for all

i P I . Therefore, for all such i we have

f pdi q � f pdk0 q � L
�
f pdi q � f pdk0 q

�
� S

�
f pdi q � f pdk0 q

�
� f pdk0 q �

�
di � k0 � 1

�
s0;

which means that f is linear on the in�nite set t di : i P I u (although with rational coe�cients).
Finally, one may implement the relation f pdi q � f p1q pmod di � 1q in order to establish that in

fact f pdi q{di is a (small and �xed) integer for all i P I .
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Approach 2. Alternatively, one may start with the following lemma.

Lemma. There exists a positive constantc such that

L

�
3N¹

i � 1

�
f pkq � f piq

�
�

�
3N¹

i � 1

L
�
f pkq � f piq

�
¥ c

�
f pkq

� 2N

for all k ¡ 3N .

Proof. Let k be an integer with k ¡ 3N . Set � �
± 3N

i � 1

�
f pkq � f piq

�
.

Notice that for every prime p PS, at most one of the numbers in the set

H �
 
f pkq � f piq: 1 ¤ i ¤ 3N

(

is divisible by a power of p which is greater than f p3N q; we say that such elements ofH are bad.
Now, for each elementh P H which is not bad we haveSphq ¤ f p3N qN , while the bad elements do
not exceedf pkq. Moreover, there are less thanN bad elements inH . Therefore,

Sp� q �
¹

hPH

S phq ¤
�
f p3N q

� 3N 2

�
�
f pkq

� N :

This easily yields the lemma statement in view of the fact that Lp� qSp� q � � ¥ �
�
f pkq

� 3N for some
absolute constant � . l

As a corollary of the lemma, one may get a weaker version of Claim 2 stating that there exists a
positive constant C such that f pkq ¤ Ck3{2 for all k ¡ 3N . Indeed, from Step 1 we have

k3N ¥
3N¹

i � 1

Lpk � iq �
3N¹

i � 1

L
�
f pkq � f piq

�
¥ c

�
f pkq

� 2N ;

so f pkq ¤ c� 1{p2N qk3{2.

To complete Step 2 now, seta � f p1q. Due to the estimates above, we may choose a positive
integer n0 such that

�
�f pnq � an

�
�   npn� 1q

2 for all n ¥ n0.
Take any n ¥ n0 with n � 2 pmod N !q. Then L

�
f pnq � f p0q

�
� Lpnq � n{2 and L

�
f pnq � f p1q

�
�

Lpn � 1q � n � 1; these relations yieldf pnq � f p0q � 0 � an pmod n{2q and f pnq � f p1q � a � an
pmod n � 1q, respectively. Thus, npn� 1q

2

�
� f pnq � an, which shows that f pnq � an in view of the

estimate above.

Comment 3. In order to perform Step 3, it su�ces to establish the equalit y f pnq � an for any
in�nite set of values of n. However, if this set has some good structure, then one may �nd easier ways
to complete this step.

For instance, after showing, as in Approach 2, thatf pnq � an for all n ¥ n0 with n � 2 pmod N !q,
one may proceed as follows. Pick an arbitrary integerx and take any large primep which is greater
than |f pxq � ax|. By the Chinese Remainder Theorem, there exists a positive integer n ¡ maxpx; n0q
such that n � 2 pmod N !q and n � x pmod pq. By Step 1, we havef pxq � f pnq � an � ax pmod pq.
Due to the choice ofp, this is possible only if f pxq � ax.
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