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Problems

Algebra

Let n be an integer, and let A be a subset of {0,1,2,3,...,5"} consisting of 4n + 2
numbers. Prove that there exist a,b,c € A such that a < b < ¢ and ¢ + 2a > 3b.

For every integer n > 1 consider the n x n table with entry {

of row ¢ and column j, for every ¢ =1,...,nand j = 1,...,n. Determine all integers n > 1 for
which the sum of the n? entries in the table is equal to 4n 2(n —1).

Given a positive integer n, find the smallest value of {%J + {%J + -+ [%J over

J 1J at the intersection

all permutations (ay, as, ..., a,) of (1,2,...,n).

Show that for all real numbers x4, ..., z, the following inequality holds:

n n

DI IRVITEEA IS 0 S )

=1j=1 i=1j=1

.

Let n > 2 be an integer, and let ay,as,...,a, be positive real numbers such that
a, +as + -+ +a, = 1. Prove that

> 2

k=1

CL1+CL2+"'+CL1€,1)2<

Wl =

1—CLk

Let A be a finite set of (not necessarily positive) integers, and let m > 2 be an integer.
Assume that there exist non-empty subsets Bi, Bs, Bs, ..., B,, of A whose elements add up to

the sums m!, m?,m3, ..., m™, respectively. Prove that A contains at least m/2 elements.

Let n > 1 be an integer, and let xg,xy,...,2,,1 be n + 2 non-negative real numbers
that satisfy z;x;,1 — 2?2 ; > 1foralli =1,2,... ,n. Show that

2n /
l‘0+ZL‘1+"'+ZL‘n+l‘n+1> ? .

Determine all functions f : R — R that satisfy
(J(@) = 1)) (F0) ~ J(0)) (£(e) — (@) = f(ab® + b + ca®) — f(a®b + PP + a)

for all real numbers a, b, c.
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Combinatorics

Let S be an infinite set of positive integers, such that there exist four pairwise distinct
a,b,c,d € S with ged(a,b) # ged(c, d). Prove that there exist three pairwise distinct x,y,z € S
such that ged(z,y) = ged(y, z) # ged(z, x).

Let n > 3 be an integer. An integer m > n + 1 is called n-colourful if, given infinitely
many marbles in each of n colours C;,Cs, ..., C,, it is possible to place m of them around a
circle so that in any group of n + 1 consecutive marbles there is at least one marble of colour
C; foreachi=1,... n.

Prove that there are only finitely many positive integers which are not n-colourful. Find
the largest among them.

A thimblerigger has 2021 thimbles numbered from 1 through 2021. The thimbles are
arranged in a circle in arbitrary order. The thimblerigger performs a sequence of 2021 moves;
in the k" move, he swaps the positions of the two thimbles adjacent to thimble .

Prove that there exists a value of k such that, in the k'™ move, the thimblerigger swaps
some thimbles a and b such that a < k < b.

The kingdom of Anisotropy consists of n cities. For every two cities there exists exactly
one direct one-way road between them. We say that a path from X to Y is a sequence of roads
such that one can move from X to Y along this sequence without returning to an already
visited city. A collection of paths is called diverse if no road belongs to two or more paths in
the collection.

Let A and B be two distinct cities in Anisotropy. Let N p denote the maximal number of
paths in a diverse collection of paths from A to B. Similarly, let Ng4 denote the maximal num-
ber of paths in a diverse collection of paths from B to A. Prove that the equality Nag = Npa
holds if and only if the number of roads going out from A is the same as the number of roads
going out from B.

Let n and k£ be two integers with n > k£ > 1. There are 2n + 1 students standing in
a circle. Each student S has 2k neighbours— namely, the k students closest to S on the right,
and the k students closest to S on the left.

Suppose that n + 1 of the students are girls, and the other n are boys. Prove that there is
a girl with at least k£ girls among her neighbours.

A hunter and an invisible rabbit play a game on an infinite square grid. First the
hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses
a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter,
and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent
if they share a side). The hunter wins if after some finite time either

e the rabbit cannot move; or
e the hunter can determine the cell in which the rabbit started.

Decide whether there exists a winning strategy for the hunter.
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Consider a checkered 3m x 3m square, where m is an integer greater than 1. A frog
sits on the lower left corner cell S and wants to get to the upper right corner cell /. The frog
can hop from any cell to either the next cell to the right or the next cell upwards.

Some cells can be sticky, and the frog gets trapped once it hops on such a cell. A set X of
cells is called blocking if the frog cannot reach F' from S when all the cells of X are sticky. A
blocking set is minimal if it does not contain a smaller blocking set.

(a) Prove that there exists a minimal blocking set containing at least 3m? — 3m cells.

(b) Prove that every minimal blocking set contains at most 3m? cells.

Note. An example of a minimal blocking set for m = 2 is shown below. Cells of the set X are marked
by letters x.

F

Determine the largest N for which there exists a table T" of integers with N rows and
100 columns that has the following properties:

(i) Every row contains the numbers 1, 2, ..., 100 in some order.
(ii) For any two distinct rows r and s, there is a column ¢ such that [T'(r,c) — T'(s,c)| = 2.

Here T'(r, ¢c) means the number at the intersection of the row r and the column c.
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Geometry

Let ABCD be a parallelogram such that AC' = BC. A point P is chosen on the
extension of the segment AB beyond B. The circumcircle of the triangle AC'D meets the
segment PD again at ), and the circumcircle of the triangle AP@Q meets the segment PC
again at R. Prove that the lines C'D, AQ, and BR are concurrent.

Let ABCD be a convex quadrilateral circumscribed around a circle with centre I.
Let w be the circumcircle of the triangle ACI. The extensions of BA and BC beyond A and
C meet w at X and Z, respectively. The extensions of AD and C'D beyond D meet w at Y

and T, respectively. Prove that the perimeters of the (possibly self-intersecting) quadrilaterals
ADTX and CDY Z are equal.

Version 1. Let n be a fixed positive integer, and let S be the set of points (x,y) on the

Cartesian plane such that both coordinates x and y are nonnegative integers smaller than 2n

(thus |S| = 4n?). Assume that F is a set consisting of n? quadrilaterals such that all their

vertices lie in S, and each point in S is a vertex of exactly one of the quadrilaterals in F.
Determine the largest possible sum of areas of all n? quadrilaterals in F.

Version 2. Let n be a fixed positive integer, and let S be the set of points (x,y) on the
Cartesian plane such that both coordinates z and y are nonnegative integers smaller than 2n
(thus |S| = 4n?). Assume that F is a set of polygons such that all vertices of polygons in F lie
in S, and each point in S is a vertex of exactly one of the polygons in F.

Determine the largest possible sum of areas of all polygons in F.

Let ABCD be a quadrilateral inscribed in a circle 2. Let the tangent to 2 at D
intersect the rays BA and BC' at points E' and F, respectively. A point T is chosen inside the
triangle ABC so that TE || CD and TF || AD. Let K # D be a point on the segment DF
such that T'D = TK. Prove that the lines AC, DT and BK intersect at one point.

Lett ABC'D be a cyclic quadrilateral whose sides have pairwise different lengths. Let
O be the circumcentre of ABC'D. The internal angle bisectors of ZABC and ZADC meet AC
at By and Dy, respectively. Let Op be the centre of the circle which passes through B and is
tangent to AC' at D;. Similarly, let Op be the centre of the circle which passes through D and
is tangent to AC' at Bj.

Assume that BD; || DB;. Prove that O lies on the line OgOp.

Determine all integers n > 3 satisfying the following property: every convex n-gon
whose sides all have length 1 contains an equilateral triangle of side length 1.
(Every polygon is assumed to contain its boundary.)
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A point D is chosen inside an acute-angled triangle ABC with AB > AC' so that
/BAD = /ZDAC. A point E is constructed on the segment AC so that ZADE = /DCB.
Similarly, a point F' is constructed on the segment AB so that ZADF = /ZDBC. A point
X is chosen on the line AC so that CX = BX. Let O; and O, be the circumcentres of the
triangles ADC and DX FE. Prove that the lines BC, EF, and O;0, are concurrent.

Let w be the circumcircle of a triangle ABC, and let {24 be its excircle which is tangent
to the segment BC'. Let X and Y be the intersection points of w and Q4. Let P and @ be the
projections of A onto the tangent lines to {24 at X and Y, respectively. The tangent line at P
to the circumcircle of the triangle APX intersects the tangent line at ) to the circumcircle of
the triangle AQY at a point R. Prove that AR | BC.
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Number Theory

Determine all integers n > 1 for which there exists a pair of positive integers (a,b)
such that no cube of a prime divides a® + b + 3 and

ab + 3b + 8
a?+b+3

Let n = 100 be an integer. The numbers n,n + 1,...,2n are written on n + 1 cards,
one number per card. The cards are shuffled and divided into two piles. Prove that one of the
piles contains two cards such that the sum of their numbers is a perfect square.

Find all positive integers n with the following property: the k positive divisors of n
have a permutation (dy,ds, ..., dy) such that for every i = 1,2, ... k, the number dy + --- + d;
is a perfect square.

Alice is given a rational number r > 1 and a line with two points B # R, where
point R contains a red bead and point B contains a blue bead. Alice plays a solitaire game by
performing a sequence of moves. In every move, she chooses a (not necessarily positive) integer
k, and a bead to move. If that bead is placed at point X, and the other bead is placed at Y,
then Alice moves the chosen bead to point X' with ﬁ = "V X.

Alice’s goal is to move the red bead to the point B. Find all rational numbers r» > 1 such
that Alice can reach her goal in at most 2021 moves.

Prove that there are only finitely many quadruples (a, b, ¢, n) of positive integers such
that
nl=a""t+ 0"+

Determine all integers n > 2 with the following property: every n pairwise distinct
integers whose sum is not divisible by n can be arranged in some order aq, as, ..., a, so that
ndividesl-a1+2-as+---+n-a,.

Let ai,as,as, ... be an infinite sequence of positive integers such that a, o, divides
ay + a4, for all positive integers n and m. Prove that this sequence is eventually periodic, i.e.
there exist positive integers N and d such that a,, = a,,4 for all n > N.

For a polynomial P(x) with integer coefficients let Pl(z) = P(x) and P**'(z) =
P(P*(z)) for k > 1. Find all positive integers n for which there exists a polynomial P(x) with
integer coefficients such that for every integer m > 1, the numbers P™(1),..., P™(n) leave
exactly [n/2™] distinct remainders when divided by n.
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Solutions

Algebra

Let n be an integer, and let A be a subset of {0,1,2,3,...,5"} consisting of 4n + 2
numbers. Prove that there exist a,b,c € A such that a < b < ¢ and ¢ + 2a > 3b.

Solution 1. (By contradiction) Suppose that there exist 4n + 2 non-negative integers zy <
Ty < --- < Zy,,1 that violate the problem statement. Then in particular x4, + 22; < 32,41
for all i =0,...,4n — 1, which gives

DN | W

Tani1 — Ti = =(Tant1 — Tiv1)-

By a trivial induction we then get

3

4dn—i
Tint1 — Ti = (5) (Tan+1 — Tan),

which for ¢ = 0 yields the contradiction

3 4n 81 n .
Tans1 — To = B (£U4n+1 - £U4n) = E (£U4n+1 - £U4n) > 5" 1.

Solution 2. Denote the maximum element of A by c¢. For kK =0,...,4n — 1 let
Ay={zeA:(1-(2/3)"e<z < (1—-(2/3)")c}.

Note that
(1—(2/3)")c =c—(16/81)"c > c— (1/5)"c = c — 1,

which shows that the sets Ay, Ay, ..., Ay,—1 form a partition of A\ {c}. Since A\ {c} has 4n+1
elements, by the pigeonhole principle some set Ay does contain at least two elements of A\ {c}.
Denote these two elements a and b and assume a < b, so that a < b < ¢. Then

ct+2a=c+2(1—(2/3)")c=(3-2(2/3)")c=3(1—(2/3)"")c > 30,

as desired.



14 Saint-Petersburg — Russia, 16th-24th July 2021

i
For every integer n > 1 consider the n x n table with entry { J 1| at the intersection

n +
of row ¢ and column j, forevery s = 1,....,nand j = 1,...,n. Determine all integers n > 1 for

which the sum of the n? entries in the table is equal to {n?(n — 1).

Answer: All integers n for which n + 1 is a prime.

Solution 1. First, observe that every pair z,y of real numbers for which the sum x + y is
integer satisfies
lz] + |y =z +y—1 (1)

The inequality is strict if  and y are integers, and it holds with equality otherwise.
We estimate the sum S as follows.

s 3. (0D - 2 () 25)

> )] (j—1)=(”%)”2.

1<i,j<n

The inequality in the last line follows from (1) by setting = = ij/(n + 1) and y = (n + 1 —
i)j/(n + 1), so that = +y = j is integral.

Now S = in?(n — 1) if and only if the inequality in the last line holds with equality, which
means that none of the values ij/(n + 1) with 1 <4, j < n may be integral.

Hence, if n + 1 is composite with factorisation n + 1 = ab for 2 < a,b < n, one gets a
strict inequality for ¢ = a and j = b. If n + 1 is a prime, then ¢j/(n + 1) is never integral and

S = inz(n —1).

Solution 2. To simplify the calculation with indices, extend the table by adding a phantom
column of index 0 with zero entries (which will not change the sum of the table). Fix a row i
with 1 <4 <mn, and let d := ged(i,n + 1) and k := (n + 1)/d. For columns j = 0,...,n, define
the remainder 7; := ij mod (n + 1). We first prove the following

Claim. For every integer g with 1 < g < d, the remainders r; with indices j in the range
(g—Dk<j<gh-1 (2)

form a permutation of the k numbers 0-d, 1-d, 2-d, ..., (k—1)-d.

Proof. If rj = r; holds for two indices j" and j in (2), then i(j'—j) = 0 mod (n + 1), so that j'—j
is a multiple of k; since |j'— j| < k—1, this implies j' = j. Hence, the k remainders are pairwise
distinct. Moreover, each remainder 7; = ij mod (n + 1) is a multiple of d = ged(i,n + 1). This
proves the claim.

We then have

n d (n+1)/d-1
1 /n+1 n+l (m+1-d)(n+1)
P — 2 — — e
S S td=d 2( ' 1> ’ . B
=0 g=1 (=0

By using (3), compute the sum S; of row i as follows:

1] 5 ij — 7y i . 1 <
Z{n—l—lJ Zn—l—l n—i—lzj n+14< "
7=0 7=0 7=0
i nn+1) 1 (n+l-d)(n+1) (in—n—1+4d)

- . (4)

n+1 2 n+l 2 2
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Equation (4) yields the following lower bound on the row sum S;, which holds with equality if
and only if d = ged(i,n + 1) = 1:

S@'Z(in_ngl_'_l):n(i;l)- (5)

By summing up the bounds (5) for the rows i = 1,...,n, we get the following lower bound for
the sum of all entries in the table

ZS@Zg(i—n:%. (6)

In (6) we have equality if and only if equality holds in (5) for each @ = 1,..., n, which happens
if and only if ged(i,n + 1) = 1 for each i = 1,...,n, which is equivalent to the fact that n + 1
is a prime. Thus the sum of the table entries is n?(n — 1) if and only if n + 1 is a prime.

Comment. To simplify the answer, in the problem statement one can make a change of variables by
introducing m := n + 1 and writing everything in terms of m. The drawback is that the expression for
the sum will then be %(m — 1)?(m — 2) which seems more artificial.
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Given a positive integer n, find the smallest value of {%J + {%J +- 4 [a—nJ over

2 n
all permutations (aj, as, ..., a,) of (1,2,...,n).

Answer: The minimum of such sums is |log, n| + 1; so if 28 < n < 2¥*1 the minimum is k + 1.

Solution 1. Suppose that 2 < n < 2F*! with some nonnegative integer k. First we show a

permutation (a1, as, ..., a,) such that |2 | + |2 ]|+ .-+ |%| = k + 1; then we will prove that

[“le + [%J +-- 4 [%"J > k + 1 for every permutation. Hence, the minimal possible value will

be k + 1.

I. Consider the permutation

(al) ::(1)7 (a2uaﬁ) ::(372)7 (a47a57a6707) ::(7747576)7
(agho1,. .. age_q) = (28 = 1,271 21 1 . 2F —9),
(gk, ... ap) = (0, 28,28 41, n—1).

This permutation consists of k£ + 1 cycles. In every cycle (a,,...,a,) = (¢, p,p+1,...,90—1)

we have ¢ < 2p, so
q q .
a; q 1—1 '
2{7J:L§J+ 2, { i le’
i=p+1

i=p

The total sum over all cycles is precisely £k + 1.

I1. In order to establish the lower bound, we prove a more general statement.

Claim. If by, ..., by are distinct positive integers then

2k b
ZHJ%HL

1=1
k

From the Claim it follows immediately that 2 [%J > Z {&J =>k+1.
1 7
i=1 i=1

b1

Proof of the Claim. Apply induction on k. For k = 1 the claim is trivial, [TJ > 1. Suppose

the Claim holds true for some positive integer k£, and consider k£ + 1.
If there exists an index j such that 28 < j < 2! and b; > j then

S5 S5 [ wn

by the induction hypothesis, so the Claim is satisfied.

Otherwise we have b; < j < 21 for every 28 < j < 2¥"!. Among the 2**! distinct numbers
bi,...,bos1 there is some b, which is at least 2**!; that number must be among b; ..., bo.
Hence, 1 < m < 2¥ and b,,, > 2F+1.

We will apply the induction hypothesis to the numbers

1 =01, o1 = b1, G =bokir,  Cmat = bmy1, .., Cop = Dok,

so take the first 2% numbers but replace b,, with by, ;. Notice that

k+1 k k
il s e e i B v A
m m m m m
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For the other indices i with 1 < i < 2", i # m we have |%| = |£], so

2k:+1 b 2]6 b 2]6
>, {—ZJ =2FJ >EFJ +1=(k+1)+1.
, l , i , 1
=1 i=1 i=1
That proves the Claim and hence completes the solution. O

Solution 2. We present a different proof for the lower bound.

Assume again 28 <n < 281 and let P = {2° 2! ... 2%} be the set of powers of 2 among
1,2,...,n. Call an integer i € {1,2,...,n} and the mterval [7,a;] good if a; = 1.
Lemma 1. The good intervals cover the integers 1,2,...,n.
Proof. Consider an arbitrary z € {1,2...,n}; we want to find a good interval [i, a;] that covers z;
i.e., 1 < x < a;. Take the cycle of the permutation that contains z, that is (z, ay, a,,,...). In
this cycle, let ¢ be the first element with a; > x; then 1 < x < a;. O

Lemma 2. If a good interval [4, a;] covers p distinct powers of 2 then |% | > p; more formally,
|%| = [[i,a:] 0 P|.

Proof. The ratio of the smallest and largest powers of 2 in the interval is at least 2P~!. By

Bernoulli’s inequality, % > 2P~1 > p: that proves the lemma. O

Now, by Lemma 1, the good intervals cover P. By applying Lemma 2 as well, we obtain

that ) )
Z{%|= 2 {%|> > ‘[iaai]ﬂP‘2\P\=k+1.

i=1 i is good 1 is good

Solution 3. We show yet another proof for the lower bound, based on the following inequality.

a > 1o a+1
b &2y

Lemma 5.

for every pair a, b of positive integers.

Proof. Let t = |4], so t < ¢ and “* < ¢+ 1. By applying the inequality 2° > ¢ + 1, we obtain
a a+1
By applying the lemma to each term, we get
& a; +1 & -
1 .
2{z| z:og2 , z:og2 a; + 1) ZlogQZ
=1 =1 i=1 i=1
Notice that the numbers a; +1,as+1,...,a, + 1 form a permutation of 2,3,...,n + 1. Hence,

in the last two sums all terms cancel out, except for log,(n + 1) in the first sum and log, 1 =0
in the second sum. Therefore,

i{J logy(n + 1) > k.

As the left-hand side is an integer, it must be at least k + 1.
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Show that for all real numbers x4, ..., z, the following inequality holds:

Solution 1. If we add ¢ to all the variables then the left-hand side remains constant and the
right-hand side becomes

H(t) ::zn:zn: |:cl-—|—:1:j+2t|.

i=1j=1
Let T be large enough such that both H(—T) and H(T) are larger than the value L of the left-
hand side of the inequality we want to prove. Not necessarily distinct points p; ; := —(z; +z;)/2

together with 7" and —T split the real line into segments and two rays such that on each of
these segments and rays the function H(t) is concave since f(t) := 4/|¢ + 2t| is concave on
both intervals (—oo, —¢/2] and [—¢/2,+0). Let [a,b] be the segment containing zero. Then
concavity implies H(0) = min{H (a), H(b)} and, since H(+T) > L, it suffices to prove the
inequalities H(—(z; + x;)/2) > L, that is to prove the original inequality in the case when all
numbers are shifted in such a way that two variables z; and x; add up to zero. In the following
we denote the shifted variables still by z;.

If i =5, i.e. x; = 0 for some index 7, then we can remove x; which will decrease both sides
by 2%, A/|xx|. Similarly, if z; + 2; = 0 for distinct ¢ and j we can remove both z; and z; which
decreases both sides by

24/2[z;| +2- )] ( |xk+xi|+«/|xk+xj|>.

k#i,5
In either case we reduced our inequality to the case of smaller n. It remains to note that for
n = 0 and n = 1 the inequality is trivial.

Solution 2. For real p consider the integral
1 — cos(px)
I(p) = ——2d
(p) L oy

which clearly converges to a strictly positive number. By changing the variable y = |p|z one
notices that I(p) = +/|p|I(1). Hence, by using the trigonometric formula cos(a — ) — cos(a +
f) = 2sinasin 8 we obtain

Vo T 0=/ =] = 1 foo cos((a —b)x) — cos((a + b)x) dp — 1 foo 2 sin(ax) sin(bx) iz,

I(1) J, /T I(1) J, /T

from which our inequality immediately follows:

ZHEJZ: \/m - Zn: Zn: \/H - 1(21) L“’ (Zyﬂji\l;a(?m» dr > 0.

i=1j=1

Comment 1. A more general inequality

n n n n
Dol — gt < Y D )
i=1j=1 i=1j=1

holds for any r € [0,2]. The first solution can be repeated verbatim for any r € [0, 1] but not for r > 1.
In the second solution, by putting 2" *! in the denominator in place of 4/ we can prove the inequality
for any r € (0,2) and the cases r = 0,2 are easy to check by hand.

Comment 2. In fact, the integral from Solution 2 can be computed explicitly, we have I(1) = /2.
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Let n > 2 be an integer, and let aq,as,...,a, be positive real numbers such that
g
a, +as + -+ +a, = 1. Prove that

n
a 1
Z b (CL1+CL2+"'+CL]€71)2<—.
1— Qe 3
k=1
Solution 1. For all £ < n, let
arsy 4
Sp=a; +ax+ - +ag and by = ——,
1-— ag

with the convention that s; = 0. Note that b is exactly a summand in the sum we need to
estimate. We shall prove the inequality

s3—s
k k_l. (1)

Indeed, it suffices to check that

(1) = 0<(1—ap) ((sk1 +ar)® —si_y) — Barsi_,
= 0<(1—ay) (3sj_; +3sp_1ar, + a;) — 3sp_,
— 0 < —3apsi_; +3(1 —ag)sk 1ax + (1 — ap)a;,

— 0< 3(1 —ai — sk_l)sk_lak + (1 - ak)ai

which holds since ay, + sp_1 = sp < 1 and a; € (0, 1).
Thus, adding inequalities (1) for k = 1,...,n, we conclude that

53— 3 1
by +by+ - +by < 20 =
1 2 3 3

as desired.

Comment 1. There are many ways of proving (1) which can be written as

as? (a4 s;)?’ — 53 <0, )

1—a

for non-negative a and s satisfying a + s < 1 and a > 0.

E.g., note that for any fixed a the expression in (2) is quadratic in s with the leading coefficient
a/(1 —a) —a > 0. Hence, it is convex as a function in s, so it suffices to check the inequality at s = 0
and s = 1 — a. The former case is trivial and in the latter case the inequality can be rewritten as

3 3
s as(a-l:o)s)+a <0,

which is trivial since a + s = 1.

Solution 2. First, let us define

n
a
S(ay,...,a,) = Z 1 —kak(al +ag+ -+ apg)n
k=1
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For some index ¢, denote a; + --- + a;_; by s. If we replace a; with two numbers a;/2 and
a;/2, i.e. replace the tuple (aq,...,a,) with (a1,...,a;-1,0;/2,a;/2,a;11,...,a,), the sum will
increase by

a;
52

a; 2
S(ay,...,a;/2,a;/2,...,a,) —S(aq,...,a,) = 1—7{1'/2 (s + (s + a;/2)%) — —

(1 —a;)(2s* + sa; + a?/4) — (2 — a;)s*
(2 —a)(1—a)
(1—a; —s)sa; + (1 —a;)a?/4
(2 —a;)(1—a;) ’

which is strictly positive. So every such replacement strictly increases the sum. By repeating
this process and making maximal number in the tuple tend to zero, we keep increasing the sum

which will converge to
1
1
j 22 dr = —.
0 3

Solution 3. We sketch a probabilistic version of the first solution. Let 1, x5, x3 be drawn
uniformly and independently at random from the segment [0,1]. Let I U I, U--- U I, be a
partition of [0, 1] into segments of length ay, as, ..., a, in this order. Let J, := I, U -+~ U [}_4
for Kk > 2 and J; := . Then

This completes the proof.

|
M=

1
3 P{xy = x9, 235 71 € I}

=
Il
—_

|
M=

(P{l’l € [k7 T, X3 € Jk} +2- P{l’l = To; T1,T9 € [k:7 T3 € Jk}

=
Il
—_

+ P{zy > 29, x3; 1,292,735 € [k})

2 ai ai
ak(a1+---+ak,1) +2-?-(a1+---+ak,1)+§

|
M=

k=1

\
M=

ay + -+ ap
(ak(al—l—---—l—ak1)2+a2(a1+---+ak1)- ! 1 a b 1)
— Qg

k=1

where for the last inequality we used that 1 —ay > a1 + -+ + ax_;. This completes the proof
since )
a a
ag + k b

1—ak - 1—ak'
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Let A be a finite set of (not necessarily positive) integers, and let m > 2 be an integer.
Assume that there exist non-empty subsets By, By, Bs, ..., B,, of A whose elements add up to
the sums m', m?, m3, ..., m™, respectively. Prove that A contains at least m/2 elements.

Solution. Let A = {ay,...,a;}. Assume that, on the contrary, k = |A| < m/2. Let

S; = Z Q;

j:ajEBi

be the sum of elements of B;. We are given that s; = m’ fori =1,...,m.
Now consider all m™ expressions of the form

fler, o em) =181+ 8o+ ...+ CnsSm, ¢ €{0,1,....m—1}foralli =1,2,... m.
Note that every number f(cy,...,c,) has the form
ajay + ...+ apag, a; €40, 1,...,m(m — 1)}

Hence, there are at most (m(m — 1) + 1) < m? < m™ distinct values of our expressions;
therefore, at least two of them coincide.

Since s; = m', this contradicts the uniqueness of representation of positive integers in the
base-m system.

Comment 1. For other rapidly increasing sequences of sums of B;’s the similar argument also

provides lower estimates on k = |A|. For example, if the sums of B; are equal to 1!, 2!, 3!, ..., m!,
then for any fixed ¢ > 0 and large enough m we get k > (1/2 — €)m. The proof uses the fact that the
combinations Y| ¢;i! with ¢; € {0,1,...,4} are all distinct.

Comment 2. The problem statement holds also if A is a set of real numbers (not necessarily integers),
the above proofs work in the real case.
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Let n > 1 be an integer, and let g, x1,..., 2,11 be n + 2 non-negative real numbers

that satisfy z;x;,1 —x? ; > 1for alli =1,2,...,n. Show that
on\ ¥
Tot+tox1 + -+ Ty + Ty > ? .

Solution 1.
Lemma 1.1. If a,b, ¢ are non-negative numbers such that ab — c? > 1, then

(a+2b)* = (b+ 2¢)* + 6.

Proof. (a +2b)* — (b+2¢)* = (a —b)* 4+ 2(b—¢)* + 6(ab — ¢*) = 6. O
Lemma 1.2. N1+ -+ /n> 2n’2

Proof. Bernoulli’s inequality (1+¢)*? > 1+3t for 0 > ¢ > —1 (or, alternatively, a straightforward
check) gives

(k — )3/2 L3/ l 3/2>k3/2 1_3 :k3/2_§\/§ (*)
L 2k 2

Summing up (=) over k = 1,2,...,n yields
0>n (\f + - \/ﬁ) . u

Now put y; := 2x;+x;,1 fori = 0,1,...,n. Wegetyo = 0andy? > y? ,+6fori=1,2,....n
by Lemma 1.1. Thus, an easy induction on i gives y; > +/6i. Using this estimate and Lemma
1.2 we get

2 2 3/2
3(x0+...+xn+1)>y1+...+yn>\/6(\fl+\/§+...+\/ﬁ) >\f6-§n3/2=3<?n) .

24 otherwise call the

Solution 2. Say that an index i € {0,1,...,n + 1} is good, if 2; > /%1,

index 7 bad.
Lemma 2.1. There are no two consecutive bad indices.

Proof. Assume the contrary and consider two bad indices j, 41 with minimal possible j. Since
0 is good, we get j > 0, thus by minimality 7 — 1 is a good index and we have

2 2 2 j+(U+1)
gx/j(j+1)>xjxj+1>x§_1+1>§(g—1)+1=§-f
that contradicts the AM—GM inequality for numbers j and j + 1. O

Lemma 2.2. 1If an index j < n — 1 is good, then
2 4 4
l‘j+1+l‘j+22\/g( j+1+\/j+2).
Proof. We have

2 2 4
Tjp1 + Tjpo = 20/Tj 10540 = 24/ 77 \/j+1 \/]+3+ 3j+§,

the last inequality follows from concavity of the square root function, or, alternatively, from
the AM-QM inequality for the numbers 4/ %j + % and 4/ %j + %. ]
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Let S; =2 +...+ andTiZ\/g(\/I—i—...—i—\/%).
Lemma 2.3. If an index ¢ is good, then S; > T;.

Proof. Induction on i. The base case ¢ = 0 is clear. Assume that the claim holds for good
indices less than ¢ and prove it for a good index ¢ > 0.

If i — 1 is good, then by the inductive hypothesis we get S; = S;_1 +x; = T;_1 + \/; =1T.
If i — 1 is bad, then ¢ > 1, and ¢ — 2 is good by Lemma 2.1. Then using Lemma 2.2 and the
inductive hypothesis we get

2
Si=5i_2+l‘i_1+l‘i>ﬂ_2+\/g(\/’i—l-l-\/’;)=’I‘i. |:|

Since either n or n + 1 is good by Lemma 2.1, Lemma 2.3 yields in both cases S, 1 > T},
and it remains to apply Lemma 1.2 from Solution 1.

Comment 1. Another way to get () is the integral bound

ko3 3
k2 — (k—1)%? = “Vade < =VEk.
k-1 2 2

Comment 2. If z; = 4/2/3 - (+/i + 1), the conditions of the problem hold. Indeed, the inequality to

check is
Wi+ DWitl1+1)—(Wi-1+1)% =32,

that rewrites as

Vit Vit l=2vi—12 (i+1/2) —+/i(i + 1) =

1/4

i+ 1/2+4/i(i + 1)

which follows from 1 )

— > -
Vi+ti—1" 2i

For these numbers we have xg+ ...+ 2,11 = (%”)3/2 +O(n), thus the multiplicative constant (2/3)3/2
in the problem statement is sharp.

VieViT1=
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Determine all functions f : R — R that satisfy
(f(a) = f(0) (F(B) = f(c)) (f(c) = f(a)) = f(ab® + bc® + ca®) — f(a®b + b°c + c*a)

for all real numbers a, b, c.

Answer: f(z) = ar + ( or f(z) = az® + § where a € {—1,0,1} and 5 € R.

Solution. Tt is straightforward to check that above functions satisfy the equation. Now let f(x)
satisfy the equation, which we denote E(a,b,c). Then clearly f(z)+ C also does; therefore, we
may suppose without loss of generality that f(0) = 0.We start with proving

Lemma. Either f(z) =0 or f is injective.

Proof. Denote by © < R? the set of points (a, b) for which f(a) = f(b). Let ©* = {(z,y) € © :
x # y}. The idea is that if (a,b) € O, then by E(a,b,z) we get

H,p(7) := (ab® + ba® + za®, a®b + b’z + 2%a) € ©

for all real x. Reproducing this argument starting with (a,b) € ©* we get more and more
points in ©. There are many ways to fill in the details, we give below only one of them.
Assume that (a,b) € ©*. Note that

g (x) := (ab® + br* + za®) — (a*b + b’z + 2%a) = (a — b)(b— z)(z — a)
and
g. () := (ab® + bx® + za®) + (a*b + b’z + 2%a) = (v + ab)(a + b) + x(a® + b?).

Hence, there exists x for which both g_(x) # 0 and g, (z) # 0. This gives a point («, 5) =
H,,(z) € ©F for which a@ # —f. Now compare E(a,1,0) and E(8,1,0). The left-hand side
expressions coincide, on right-hand side we get f(a) — f(a®) = f(B) — f(B?), respectively.
Hence, f(a?) = f(B%) and we get a point (ay,3;) = (a?,5%) € ©* with both coordinates
aq, f1 non-negative. Continuing squaring the coordinates, we get a point (7, ) € ©* for which
d > 5y = 0. Our nearest goal is to get a point (0,7) € ©*. If 4 = 0, this is already done. If
v > 0, denote by z a real root of the quadratic equation dv2 + yz? + 262 = 0, which exists since
the discriminant §* — 463 is positive. Also z < 0 since this equation cannot have non-negative
root. For the point Hs,(z) =: (0,7) € O the first coordinate is 0. The difference of coordinates
equals —r = (§ —y)(y —z)(x — §) < 0, so r # 0 as desired.

Now, let (0,7) € ©*. We get Hy,(z) = (rz?,r’*z) € ©. Thus f(rz?) = f(r?z) for all z € R.

Replacing x to —x we get f(ra?) = f(r’z) = f(—rx), so f is even: (a, —a) € O for all a. Then

H, o(z) = (a® —az® + za®, —a® + a’x + 2%a) € O for all real a, z. Putting 2 = 1254 we obtain
(0, (1 + v/5)a®) € © which means that f(y) = f(0) = 0 for every real 3. !
Hereafter we assume that f is injective and f(0) = 0. By F(a,b,0) we get
F(a@)f®)(f(a) = f(b)) = f(a®b) — f(ab?). (©)
Let k := f(1) and note that k = f(1) # f(0) = 0 by injectivity. Putting b =1 in (©) we get
kf(a)(f(a) — k) = f(a®) = f(a). (%)

Subtracting the same equality for —a we get

(f(a) = f(=a))(f(a) + f(=a) — k) = f(=a) = f(a).
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Now, if a # 0, by injectivity we get f(a) — f(—a) # 0 and thus
fla)+ f(=a) =k — K" =\ (®)

It follows that

fla) = f(b) = f(=b) = f(=a)
for all non-zero a,b. Replace non-zero numbers a, b in (O) with —a, —b, respectively, and add
the two equalities. Due to (#) we get

thus f(a)f(b) = f(—a)f(=b) = (A= f(a))(A— f(b)) for all non-zero a # b. If X\ # 0, this implies
f(a) + f(b) = X that contradicts injectivity when we vary b with fixed a. Therefore, A\ = 0 and
k = +1. Thus f is odd. Replacing f with — f if necessary (this preserves the original equation)
we may suppose that f(1) = 1.

Now, (&) yields f(a®) = f*(a). Summing relations (V) for pairs (a,b) and (a, —b), we get
—2f(a)f?(b) = —=2f(ab?), i.e. f(a)f(V?) = f(ab?). Putting b = \/x for each non-negative z we
get f(azx) = f(a)f(x) for all real a and non-negative x. Since f is odd, this multiplicativity
relation is true for all a,z. Also, from f(a?) = f?(a) we see that f(z) > 0 for z > 0. Next,
f(z) > 0 for z > 0 by injectivity.

Assume that f(z) for x > 0 does not have the form f(z) = 2" for a constant 7. The known
property of multiplicative functions yields that the graph of f is dense on (0, 00)2. In particular,
we may find positive b < 1/10 for which f(b) > 1. Also, such b can be found if f(z) = 27 for
some 7 < 0. Then for all z we have 22 + 2b®> + b > 0 and so E(1,b, z) implies that

FO* +ba® +2) = f(2® + 2b® + ) + (f(b) = D(f (@) = fFO)(f(2) = 1) = 0= ((f(b) — 1)°/4

is bounded from below (the quadratic trinomial bound (t — f(1))(t — f(b)) = —(f(b) — 1)*/4
for t = f(x) is used). Hence, f is bounded from below on (b* — -, +00), and since f is odd it
is bounded from above on (0, & — b%). This is absurd if f(z) = 27 for 7 < 0, and contradicts
to the above dense graph condition otherwise.

Therefore, f(x) = 27 for z > 0 and some constant 7 > 0. Dividing E(a, b, c) by (a —b)(b—
c)(c —a) = (ab® + bc* + ca®) — (a®b + b?c + c*a) and taking a limit when a,b, ¢ all go to 1
(the divided ratios tend to the corresponding derivatives, say, “=2" — (27)!_, = 7), we get
% =7.37"1, 72 =371, F(r):= 372712 — 7 = 0. Since function F is strictly convex, it has at
most two roots, and we get 7 € {1, 3}.
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Combinatorics

Let S be an infinite set of positive integers, such that there exist four pairwise distinct
a,b,c,d € S with ged(a,b) # ged(c, d). Prove that there exist three pairwise distinct x,y,z € S
such that ged(z,y) = ged(y, z) # ged(z, x).

Solution. There exists a € S so that {ged(a,s) | s € S, s # a} contains at least two ele-
ments. Since « has only finitely many divisors, there is a d | a such that the set B = {5 €
S | ged(a, B) = d} is infinite. Pick v € S so that ged(a,y) # d. Pick 1,82 € B so that
ged(By,7y) = ged(Ba,y) =: d'. If d = d', then ged(a, £1) = ged(y, 81) # ged(a,y). If d # d,
then either ged(o, 51) = ged(a, B2) = d and ged (B, B2) # d or ged(y, 51) = ged(y, B2) = d’ and
ged(By, B2) # d.

Comment. The situation can be modelled as a complete graph on the infinite vertex set S, where
every edge {s,t} is colored by c(s,t) := ged(s, t). For every vertex the incident edges carry only finitely
many different colors, and by the problem statement at least two different colors show up on the edge
set. The goal is to show that there exists a bi-colored triangle (a triangle, whose edges carry exactly
two different colors).

For the proof, consider a vertex v whose incident edges carry at least two different colors. Let
X < S be an infinite subset so that c¢(v,z) = ¢; for all z € X. Let y € S be a vertex so that
c(v,y) # c1. Let x1, 29 € X be two vertices with ¢(y,z1) = ¢(y,z2) = co. If ¢; = co, then the triangle
v,y,x1 is bi-colored. If ¢; # co, then one of v, z1,z9 and y, x1, 2 is bi-colored.
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Let n > 3 be an integer. An integer m > n + 1 is called n-colourful if, given infinitely
many marbles in each of n colours C1,Cs, ..., C,, it is possible to place m of them around a
circle so that in any group of n + 1 consecutive marbles there is at least one marble of colour
C; foreachi=1,... n.

Prove that there are only finitely many positive integers which are not n-colourful. Find
the largest among them.

Answer: My, =n> —n — 1.

Solution. First suppose that there are n(n — 1) — 1 marbles. Then for one of the colours, say
blue, there are at most n — 2 marbles, which partition the non-blue marbles into at most n — 2
groups with at least (n —1)? > n(n —2) marbles in total. Thus one of these groups contains at
least n + 1 marbles and this group does not contain any blue marble.

Now suppose that the total number of marbles is at least n(n —1). Then we may write this
total number as nk + 5 with some £k > n — 1 and with 0 < j < n — 1. We place around a circle
k — j copies of the colour sequence [1,2,3,...,n] followed by j copies of the colour sequence
[1,1,2,3,...,n].
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A thimblerigger has 2021 thimbles numbered from 1 through 2021. The thimbles are
arranged in a circle in arbitrary order. The thimblerigger performs a sequence of 2021 moves;
in the ™™ move, he swaps the positions of the two thimbles adjacent to thimble k.

Prove that there exists a value of k such that, in the k*" move, the thimblerigger swaps
some thimbles a and b such that a < k < b.

Solution. Assume the contrary. Say that the k'™ thimble is the central thimble of the k™ move,
and its position on that move is the central position of the move.

Step 1: Black and white colouring.

Before the moves start, let us paint all thimbles in white. Then, after each move, we repaint
its central thimble in black. This way, at the end of the process all thimbles have become black.

By our assumption, in every move k, the two swapped thimbles have the same colour (as
their numbers are either both larger or both smaller than k). At every moment, assign the
colours of the thimbles to their current positions; then the only position which changes its
colour in a move is its central position. In particular, each position is central for exactly one
move (when it is being repainted to black).

Step 2: Red and green colouring.

Now we introduce a colouring of the positions. If in the k" move, the numbers of the two
swapped thimbles are both less than k, then we paint the central position of the move in red;
otherwise we paint that position in green. This way, each position has been painted in red or
green exactly once. We claim that among any two adjacent positions, one becomes green and
the other one becomes red; this will provide the desired contradiction since 2021 is odd.

Consider two adjacent positions A and B, which are central in the a'™ and in the b moves,
respectively, with a < b. Then in the a'® move the thimble at position B is white, and therefore
has a number greater than a. After the a'" move, position A is green and the thimble at
position A is black. By the arguments from Step 1, position A contains only black thimbles
after the a'™ step. Therefore, on the b"" move, position A contains a black thimble whose
number is therefore less than b, while thimble b is at position B. So position B becomes red,
and hence A and B have different colours.

Comment 1. Essentially, Step 1 provides the proof of the following two assertions (under the indirect
assumption):
(1) Each position P becomes central in exactly one move (denote that move’s number by k); and

(2) Before the k" move, position P always contains a thimble whose number is larger than the number
of the current move, while after the k™ move the position always contains a thimble whose number is
smaller than the number of the current move.

Both (1) and (2) can be proved without introduction of colours, yet the colours help to visualise
the argument.

After these two assertions have been proved, Step 2 can be performed in various ways, e.g., as
follows.

At any moment in the process, the black positions are split into several groups consisting of one or
more contiguous black positions each; different groups are separated by white positions. Now one can
prove by induction on k that, after the £™ move, all groups have odd sizes. Indeed, in every move, the
new black position either forms a separate group, or merges two groups (say, of lengths a and b) into
a single group of length a + b + 1.

However, after the 2020*" move the black positions should form one group of length 2020. This is
a contradiction.

This argument has several variations; e.g., one can check in a similar way that, after the process
starts, at least one among the groups of white positions has an even size.
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Comment 2. The solution above works equally well for any odd number of thimbles greater than 1,
instead of 2021. On the other hand, a similar statement with an even number n = 2k > 4 of thimbles is
wrong. To show that, the thimblerigger can enumerate positions from 1 through n clockwise, and then
put thimbles 1,2,...,k at the odd positions, and thimbles £ + 1,k + 2,...,2k at the even positions.
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The kingdom of Anisotropy consists of n cities. For every two cities there exists exactly
one direct one-way road between them. We say that a path from X to Y is a sequence of roads
such that one can move from X to Y along this sequence without returning to an already
visited city. A collection of paths is called diverse if no road belongs to two or more paths in
the collection.

Let A and B be two distinct cities in Anisotropy. Let N p denote the maximal number of
paths in a diverse collection of paths from A to B. Similarly, let Ng4 denote the maximal num-
ber of paths in a diverse collection of paths from B to A. Prove that the equality Ny = Nga
holds if and only if the number of roads going out from A is the same as the number of roads
going out from B.

Solution 1. We write X — Y (or Y « X) if the road between X and Y goes from X
to Y. Notice that, if there is any route moving from X to Y (possibly passing through some
cities more than once), then there is a path from X to Y consisting of some roads in the route.
Indeed, any cycle in the route may be removed harmlessly; after some removals one obtains a
path.

Say that a path is short if it consists of one or two roads.

Partition all cities different from A and B into four groups, Z, O, A, and B according to
the following rules: for each city C,

Cel = A—-(C <« B; CeO < A (C - B;
CeAd = A—-C—> B; CeB < A« (C « B.

Lemma. Let P be a diverse collection consisting of p paths from A to B. Then there exists
a diverse collection consisting of at least p paths from A to B and containing all short paths
from A to B.

Proof. In order to obtain the desired collection, modify P as follows.

If there is a direct road A — B and the path consisting of this single road is not in P,
merely add it to P.

Now consider any city C € A such that the path A — C — B is not in P. If P contains at
most one path containing a road A — C or C' — B, remove that path (if it exists), and add the
path A - C' — B to P instead. Otherwise, P contains two paths of the forms A - C' --» B
and A --» C' — B, where C --» B and A --» C are some paths. In this case, we recombine
the edges to form two new paths A - C — B and A --» C' --» B (removing cycles from the
latter if needed). Now we replace the old two paths in P with the two new ones.

After any operation described above, the number of paths in the collection does not decrease,
and the collection remains diverse. Applying such operation to each C' € A, we obtain the
desired collection. ]

Back to the problem, assume, without loss of generality, that there is a road A — B, and
let @ and b denote the numbers of roads going out from A and B, respectively. Choose a diverse
collection P consisting of Np paths from A to B. We will transform it into a diverse collection
Q consisting of at least Nyp + (b — a) paths from B to A. This construction yields

Npa = Nap + (b — a); similarly, we get Nap = Npa + (a —b),

whence Ngs — Nap = b — a. This yields the desired equivalence.

Apply the lemma to get a diverse collection P’ of at least Np paths containing all |A] + 1
short paths from A to B. Notice that the paths in P’ contain no edge of a short path from B

to A. Each non-short path in P’ has the foom A — C --» D — B, where C --» D is
a path from some city C' € Z to some city D € O. For each such path, put into Q the
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path B — C' --» D — A; also put into Q all short paths from B to A. Clearly, the collection Q
is diverse.

Now, all roads going out from A end in the cities from Z U A U { B}, while all roads going
out from B end in the cities from Z u B. Therefore,

a=|Z|+|Al+1, b=|Z|]+]8], and hence a—b=|A|—|B|+ 1.

On the other hand, since there are |A|+ 1 short paths from A to B (including A — B) and |B|
short paths from B to A, we infer

19| = |P'| = (JA[ + 1) + [B] = Nag + (b— a),
as desired.

Solution 2. We recall some graph-theoretical notions. Let GG be a finite graph, and let V' be
the set of its vertices; fix two distinct vertices s,¢ € V. An (s,t)-cut is a partition of V into
two parts V =S 1 T such that s € S and t € T. The cut-edges in the cut (S,T) are the edges
going from S to T', and the size e(S,T') of the cut is the number of cut-edges.

We will make use of the following theorem (which is a partial case of the Ford-Fulkerson
“min-cut max-flow” theorem).

Theorem (Menger). Let G be a directed graph, and let s and ¢ be its distinct vertices. Then the
maximal number of edge-disjoint paths from s to ¢ is equal to the minimal size of an (s, t)-cut.

Back to the problem. Consider a directed graph GG whose vertices are the cities, and edges
correspond to the roads. Then N,p is the maximal number of edge-disjoint paths from A to B
in this graph; the number Ng,4 is interpreted similarly.

As in the previous solution, denote by a and b the out-degrees of vertices A and B, respec-
tively. To solve the problem, we show that for any (A, B)-cut (S4,T4) in our graph there exists
a (B, A)-cut (Sp,Tp) satisfying

e(Sp,Tp) = e(Sa,Ta) + (b—a).
This yields
Npa < Nap + (b—a); similarly, we get Nap < Npa + (a — D),

whence again Ngq — Nag = b — a.

The construction is simple: we put Sp =S4 U {B} \ {A} and hence T = T4 U {A}\ {B}.
To show that it works, let A and B denote the sets of cut-edges in (Sa,74) and (S, Ts),
respectively. Let as and a; = a — a5 denote the numbers of edges going from A to S and Ty,
respectively. Similarly, denote by b, and b, = b — b, the numbers of edges going from B to Sg
and Tp, respectively.

Notice that any edge incident to none of A and B either belongs to both A and B, or belongs
to none of them. Denote the number of such edges belonging to A by c¢. The edges in A which
are not yet accounted for split into two categories: those going out from A to T4 (including
A — B if it exists), and those going from S, \ {A} to B — in other words, going from Sz to B.
The numbers of edges in the two categories are a; and |Sg| — 1 — by, respectively. Therefore,

Al = c+a; + (|Sp| —bs —1).  Similarly, we get |B| =c+ b + (|Sa] —as — 1),

and hence
IB| — |A| = (b + bs) — (as + as) = b —a,

since |S4| = |Sp|. This finishes the solution.
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Let n and k£ be two integers with n > k£ > 1. There are 2n + 1 students standing in
a circle. Each student S has 2k neighbours— namely, the k students closest to S on the right,
and the k students closest to S on the left.

Suppose that n + 1 of the students are girls, and the other n are boys. Prove that there is
a girl with at least k£ girls among her neighbours.

Solution. We replace the girls by 1’s, and the boys by 0’s, getting the numbers a1, as, . .., a2,41
arranged in a circle. We extend this sequence periodically by letting as, 1% = ay for all k € Z.
We get an infinite periodic sequence

ceey 01,02, A2p 11,01, A2, - - o A2p4 1y - -
Consider the numbers b; = a; + a;_,_1 — 1 € {—1,0,1} for all i € Z. We know that
b1+ bmio + -+ bpioni =1 (meZ); (1)

in particular, this yields that there exists some 7y with b;, = 1. Now we want to find an index
1 such that

bz‘ =1 and bz‘+1 + bz‘+2 + -+ bz‘+k = 0. (2)

This will imply that a; = 1 and
(@iek + Qimpr1 + -+ i) + (@i + Qigo + -+ agr) =k,

as desired.

Suppose, to the contrary, that for every index ¢ with b; = 1 the sum b; .1 + b;yo + -+ - + b1
is negative. We start from some index iy with b;, = 1 and construct a sequence g, i1, 72, ...,
where i; (j > 0) is the smallest possible index such that i; > 4;,_, + k and b;, = 1. We can
choose two numbers among ig, i1, ..., i2,+1 Which are congruent modulo 2n + 1 (without loss
of generality, we may assume that these numbers are iy and ir).

On the one hand, for every j with 0 < 7 < T — 1 we have

S = bi; +bi, 41+ b0+ -+ by 1 <by, +bi010+ 00+ bk <O

since b;;4x41,---,0i,,,—1 < 0. On the other hand, since (i —ig) | (2n + 1), from (1) we deduce
o i
So+ - 4+ Sr= Y bj=—2>0.
° o ZO 2n + 1

This contradiction finishes the solution.

Comment 1. After the problem is reduced to finding an index 4 satisfying (2), one can finish the
solution by applying the (existence part of) following statement.

Lemma (Raney). 1If (x1,x9,...,z,) is any sequence of integers whose sum is +1, exactly one of
the cyclic shifts (x1,x9,...,xm), (T2, ..., Tm,x1) ..., (Tm,x1,...,Tm—1) has all of its partial sums
positive.

A (possibly wider known) version of this lemma, which also can be used in order to solve the
problem, is the following

Claim (Gas stations problem). Assume that there are several fuel stations located on a circular route
which together contain just enough gas to make one trip around. Then one can make it all the way
around, starting at the right station with an empty tank.
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Both Raney’s theorem and the Gas stations problem admit many different (parallel) proofs. Their
ideas can be disguised in direct solutions of the problem at hand (as it, in fact, happens in the above
solution); such solutions may avoid the introduction of the b;. Below, in Comment 2 we present a
variant of such solution, while in Comment 3 we present an alternative proof of Raney’s theorem.

Comment 2. Here is a version of the solution which avoids the use of the b;.

Suppose the contrary. Introduce the numbers a; as above. Starting from any index sg with ag, = 1,
we construct a sequence sg, s1, S, ... by letting s; to be the smallest index larger than s; 1 +k such that
as; =1, for : =1,2,.... Choose two indices among s1, ..., S2p+1 Which are congruent modulo 2n + 1;
we assume those two are sy and sp, with sp — sg = t(2n + 1). Notice here that spi1 — sp = s1 — so.

For every ¢ =0,1,2,...,T, put

Li=siy1—5 and S;=as +as41+ - +as,,-1-
Now, by the indirect assumption, for every ¢ = 1,2,...,T, we have
Qs,—k + Qs;—fpt1 + -+ + Q5,16 < as, + (k—1) = k.

Recall that a; = 0 for all j with s; + & < j < ag,,,. Therefore,

si+k —k—1 s;+k
Si1+.95; = Z a; = Z a; + Z aj<(5i—5i,1—k‘)+k3=Li,1.
J=8i—1 J=si—1 Jj=si—k
Summing up these equalities over ¢ = 1,2,...,T we get
T T
2t(n+1) = > (Si-1+8) <D Li1 = (2n + 1)t
i=1 i=1

which is a contradiction.

Comment 3. Here we present a proof of Raney’s lemma different from the one used above.

If we plot the partial sums s, = 21 + --- + x,, as a function of n, the graph of s, has an average
slope of 1/m, because S;,4+n, = sp, + 1.

The entire graph can be contained between two lines of slope 1/m. In general these bounding lines
touch the graph just once in each cycle of m points, since lines of slope 1/m hit points with integer
coordinates only once per m units. The unique (in one cycle) lower point of intersection is the only
place in the cycle from which all partial sums will be positive.

Comment 4. The following example shows that for different values of k the required girl may have
different positions: 01100110 1.
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A hunter and an invisible rabbit play a game on an infinite square grid. First the
hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses
a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter,
and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent
if they share a side). The hunter wins if after some finite time either

e the rabbit cannot move; or
e the hunter can determine the cell in which the rabbit started.

Decide whether there exists a winning strategy for the hunter.

Answer: Yes, there exists a colouring that yields a winning strategy for the hunter.

Solution. A central idea is that several colourings C7, Cs, ..., Cy can be merged together into
a single product colouring C x Cy x --- x C}, as follows: the colours in the product colouring
are ordered tuples (cq, ..., ¢,) of colours, where ¢; is a colour used in Cj, so that each cell gets
a tuple consisting of its colours in the individual colourings C;. This way, any information
which can be determined from one of the individual colourings can also be determined from
the product colouring.

Now let the hunter merge the following colourings:

e The first two colourings C; and C5 allow the tracking of the horizontal and vertical
movements of the rabbit.

The colouring C' colours the cells according to the residue of their z-coordinates modulo 3,
which allows to determine whether the rabbit moves left, moves right, or moves vertically.
Similarly, the colouring C' uses the residues of the y-coordinates modulo 3, which allows
to determine whether the rabbit moves up, moves down, or moves horizontally.

e Under the condition that the rabbit’s z-coordinate is unbounded, colouring C3 allows to
determine the exact value of the z-coordinate:

In (3, the columns are coloured white and black so that the gaps between neighboring
black columns are pairwise distinct. As the rabbit’s z-coordinate is unbounded, it will
eventually visit two black cells in distinct columns. With the help of colouring C the
hunter can catch that moment, and determine the difference of z-coordinates of those two
black cells, hence deducing the precise column.

Symmetrically, under the condition that the rabbit’s y-coordinate is unbounded, there is
a colouring C} that allows the hunter to determine the exact value of the y-coordinate.

e Finally, under the condition that the sum z + y of the rabbit’s coordinates is unbounded,
colouring C5 allows to determine the exact value of this sum: The diagonal lines x + y =
const are coloured black and white, so that the gaps between neighboring black diagonals
are pairwise distinct.

Unless the rabbit gets stuck, at least two of the three values z, y and x+y must be unbounded as
the rabbit keeps moving. Hence the hunter can eventually determine two of these three values;
thus he does know all three. Finally the hunter works backwards with help of the colourings
Ch and C5 and computes the starting cell of the rabbit.

Comment. There are some variations of the solution above: e.g., the colourings C5, C4 and C5 can
be replaced with different ones. However, such alternatives are more technically involved, and we do
not present them here.
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Consider a checkered 3m x 3m square, where m is an integer greater than 1. A frog
sits on the lower left corner cell S and wants to get to the upper right corner cell /. The frog
can hop from any cell to either the next cell to the right or the next cell upwards.

Some cells can be sticky, and the frog gets trapped once it hops on such a cell. A set X of
cells is called blocking if the frog cannot reach F' from S when all the cells of X are sticky. A
blocking set is minimal if it does not contain a smaller blocking set.

(a) Prove that there exists a minimal blocking set containing at least 3m? — 3m cells.

(b) Prove that every minimal blocking set contains at most 3m? cells.

Note. An example of a minimal blocking set for m = 2 is shown below. Cells of the set X are marked
by letters x.

F

Solution for part (a). In the following example the square is divided into m stripes of size
3 x 3m. It is easy to see that X is a minimal blocking set. The first and the last stripe each
contains 3m — 1 cells from the set X; every other stripe contains 3m — 2 cells, see Figure 1.
The total number of cells in the set X is 3m? — 2m + 2.

x| |z T N T
2 T xT T x
T T T T
X T xT T x
T x T T
T T T x| |z
S x
Figure 1

Solution 1 for part (b). For a given blocking set X, say that a non-sticky cell is red if the
frog can reach it from S via some hops without entering set X. We call a non-sticky cell blue
if the frog can reach F' from that cell via hops without entering set X. One can regard the
blue cells as those reachable from F' by anti-hops, i.e. moves downwards and to the left. We
also colour all cells in X green. It follows from the definition of the blocking set that no cell
will be coloured twice. In Figure 2 we show a sample of a blocking set and the corresponding
colouring.

Now assume that X is a minimal blocking set. We denote by R (resp., B and G) be the
total number of red (resp., blue and green) cells.

We claim that G < R+ 1 and G < B + 1. Indeed, there are at most 2R possible frog
hops from red cells. Every green or red cell (except for S) is accessible by such hops. Hence
2R > G + (R — 1), or equivalently G < R + 1. In order to prove the inequality G < B + 1, we
turn over the board and apply the similar arguments.

Therefore we get 9m? > B+ R+ G = 3G — 2, so G < 3m?.
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T T

Figure 2 (a) Figure 2 (b)

Solution 2 for part (b). We shall use the same colouring as in the above solution. Again,
assume that X is a minimal blocking set.

Note that any 2 x 2 square cannot contain more than 2 green cells. Indeed, on Figure 3(a)
the cell marked with “?” does not block any path, while on Figure 3(b) the cell marked with
“?” should be coloured red and blue simultaneously. So we can split all green cells into chains
consisting of three types of links shown on Figure 4 (diagonal link in the other direction is not
allowed, corresponding green cells must belong to different chains). For example, there are 3
chains in Figure 2(b

”E =5 pEm

Figure 3 Figure 4 Figure 5

We will inscribe green chains in disjoint axis-aligned rectangles so that the number of green
cells in each rectangle will not exceed 1/3 of the area of the rectangle. This will give us the
bound G' < 3m?. Sometimes the rectangle will be the minimal bounding rectangle of the chain,
sometimes minimal bounding rectangles will be expanded in one or two directions in order to
have sufficiently large area.

Note that for any two consecutive cells in the chain the colouring of some neighbouring
cells is uniquely defined (see Figure 5). In particular, this observation gives a corresponding
rectangle for the chains of height (or width) 1 (see Figure 6(a)). A separate green cell can
be inscribed in 1 x 3 or 3 x 1 rectangle with one red and one blue cell, see Figure 6(b)—(c),
otherwise we get one of impossible configurations shown in Figure 3.

(a) ®) ()
Figure 6

Any diagonal chain of length 2 is always inscribed in a 2 x 3 or 3 x 2 rectangle without
another green cells. Indeed, one of the squares marked with “?” in Figure 7(a) must be red. If
it is the bottom question mark, then the remaining cell in the corresponding 2 x 3 rectangle
must have the same colour, see Figure 7(b).

A longer chain of height (or width) 2 always has a horizontal (resp., vertical) link and can be
inscribed into a 3 x a rectangle. In this case we expand the minimal bounding rectangle across
the long side which touches the mentioned link. On Figure 8(a) the corresponding expansion
of the minimal bounding rectangle is coloured in light blue. The upper right corner cell must
be also blue. Indeed it cannot be red or green. If it is not coloured in blue, see Figure 8(b),
then all anti-hop paths from F' to “?” are blocked with green cells. And these green cells are
surrounded by blue ones, what is impossible. In this case the green chain contains a cells, which
is exactly 1/3 of the area of the rectangle.
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Figure 8 (a) Figure 8 (b)

In the remaining case the minimal bounding rectangle of the chain is of size a x b where
a,b = 3. Denote by ¢ the length of the chain (i.e. the number of cells in the chain).

If the chain has at least two diagonal links (see Figure 9), then £ < a + b — 3 < ab/3.

If the chain has only one diagonal link then ¢ = a+b—2. In this case the chain has horizontal
and vertical end-links, and we expand the minimal bounding rectangle in two directions to get
an (a+1) x (b+1) rectangle. On Figure 10 a corresponding expansion of the minimal bounding
rectangle is coloured in light red. Again the length of the chain does not exceed 1/3 of the
rectangle’s area: { <a+b—2<(a+1)(b+1)/3.

On the next step we will use the following statement: all cells in constructed rectangles are
coloured red, green or blue (the cells upwards and to the right of green cells are blue; the cells

downwards and to the left of green cells are red). The proof repeats the same arguments as
before (see Figure 8(b).)

(b)

Figure 9

Figure 11

Note that all constructed rectangles are disjoint. Indeed, assume that two rectangles have a
common cell. Using the above statement, one can see that the only such cell can be a common
corner cell, as shown in Figure 11. Moreover, in this case both rectangles should be expanded,
otherwise they would share a green corner cell.

If they were expanded along the same axis (see Figure 11(a)), then again the common corner
cannot be coloured correctly. If they were expanded along different axes (see Figure 11(b)) then
the two chains have a common point and must be connected in one chain. (These arguments
work for 2 x 3 and 1 x 3 rectangles in a similar manner.)

Comment 1. We do not a priori know whether all points are either red, or blue, or green. One might
colour the remaining cells in black. The arguments from Solution 2 allow to prove that black cells do
not exist. (One can start with a black cell which is nearest to S. Its left and downward neighbours
must be coloured green or blue. In all cases one gets a configuration similar to Figure 8(b).)

Comment 2. The maximal possible size of a minimal blocking set in 3m x 3m rectangle seems to
be 3m? — 2m + 2.

One can prove a more precise upper bound on the cardinality of the minimal blocking set: G <
3m? — m + 2. Denote by Dg the number of red branching cells (i.e. such cells which have 2 red
subsequent neighbours). And let Dp be the number of similar blue cells. Then a double counting
argument allows to prove that G < R— Dr+ 1 and G < B— Dpg + 1. Thus, we can bound G in terms
of Dp and Dp as

9m? >R+B+G=>3G+Dr+Dg—2.

Now one can estimate the number of branching cells in order to obtain that G < 3m? —m + 2.
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Comment 3. An example with 3m? — 2m + 2 green cells may look differently; see, e.g., Figure 12.

Figure 12
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Determine the largest N for which there exists a table T" of integers with N rows and
100 columns that has the following properties:

(i) Every row contains the numbers 1, 2, ..., 100 in some order.

(ii) For any two distinct rows r and s, there is a column ¢ such that [T'(r,c) — T'(s,c)| = 2.

Here T'(r, ¢) means the number at the intersection of the row r and the column c.

Answer: The largest such integer is N = 100!/2°°.

Solution 1.

Non-existence of a larger table. Let us consider some fixed row in the table, and let
us replace (for k =1,2,...,50) each of two numbers 2k — 1 and 2k respectively by the symbol
xk. The resulting pattern is an arrangement of 50 symbols x1, xs, . .., x50, Where every symbol
occurs exactly twice. Note that there are N = 100!/2%° distinct patterns Py, ..., Py.

If two rows r # s in the table have the same pattern P;, then |T'(r,c¢) — T'(s,c)| < 1 holds
for all columns c. As this violates property (ii) in the problem statement, different rows have
different patterns. Hence there are at most N = 100!/2° rows.

Existence of a table with N rows. We construct the table by translating every pattern
P; into a corresponding row with the numbers 1,2,...,100. We present a procedure that in-
ductively replaces the symbols by numbers. The translation goes through steps k = 1,2,...,50
in increasing order and at step k replaces the two occurrences of symbol z; by 2k — 1 and 2k.

e The left occurrence of x; is replaced by 1, and its right occurrence is replaced by 2.

e For k£ > 2, we already have the number 2k — 2 somewhere in the row, and now we are
looking for the places for 2k —1 and 2k. We make the three numbers 2k —2, 2k —1, 2k show
up (ordered from left to right) either in the order 2k —2, 2k — 1, 2k, or as 2k, 2k —2, 2k — 1,
or as 2k — 1,2k, 2k — 2. This is possible, since the number 2k — 2 has been placed in
the preceding step, and shows up before / between / after the two occurrences of the
symbol zy.

We claim that the N rows that result from the N patterns yield a table with the desired
property (ii). Indeed, consider the r-th and the s-th row (r # s), which by construction result
from patterns P, and P,. Call a symbol x; aligned, if it occurs in the same two columns in
P, and in P,. Let k be the largest index, for which symbol x; is not aligned. Note that
k = 2. Consider the column ¢ with T'(r, ) = 2k and the column ¢” with T'(s, ¢") = 2k. Then
T(r,c") <2k and T'(s, ) < 2k, as all symbols x; with ¢ > k + 1 are aligned.

o If T(r,c") <2k —2, then |T'(r,c") —T(s,")| = 2 as desired.
o If T'(s,c) <2k —2, then |T'(r,d') —T(s,c)| = 2 as desired.
o If T'(r,d") =2k —1 and T'(s,) = 2k — 1, then the symbol x is aligned; contradiction.

In the only remaining case we have ¢ = ¢”, so that T'(r, ') = T'(s,’) = 2k holds. Now let
us consider the columns d' and d” with T(r,d') = 2k — 1 and T'(s,d”) = 2k — 1. Then d # d"
(as the symbol xy is not aligned), and T'(r,d") < 2k — 2 and T'(s,d’) < 2k — 2 (as all symbols
x; with ¢ = k + 1 are aligned).

o If T'(r,d") <2k — 3, then |T(r,d") — T(s,d")| = 2 as desired.
o If T'(s,) <2k — 3, then |T'(r,d") — T(s,d')| = 2 as desired.

In the only remaining case we have T'(r,d") = 2k — 2 and T'(s,d') = 2k — 2. Now the row r
has the numbers 2k — 2, 2k — 1, 2k in the three columns d’,d”, ¢’. As one of these triples violates
the ordering property of 2k — 2,2k — 1,2k, we have the final contradiction. ]
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Comment 1. We can identify rows of the table 7" with permutations of M := {1,...,100}; also for
every set S < M each row induces a subpermutation of S obtained by ignoring all entries not from S.

The example from Solution 1 consists of all permutations for which all subpermutations of the 50
sets {1,2},{2,3,4},{4,5,6},...,{98,99,100} are even.

Solution 2. We provide a bit different proof why the example from Solution 1 (see also
Comment 1) works.

Lemma. Let m; and 72 be two permutations of the set {1,2,...,n} such that |m (i) —m(i)| < 1
for every i. Then there exists a set of disjoint pairs (7,7 + 1) such that my is obtained from m;
by swapping elements in each pair from the set.

Proof. We may assume that (i) = i for every ¢ and proceed by induction on n. The case
n = 1 is trivial. If my(n) = n, we simply apply the induction hypothesis. If m(n) = n — 1,
then my(7) = n for some ¢ < n. It is clear that ¢ = n — 1, and we can also use the induction
hypothesis. []

Now let m; and 7y be two rows (which we identify with permutations of {1,2,...,100})
of the table constructed in Solution 1. Assume that |m (i) — m2(¢)| < 1 for any i. From the
Lemma it follows that there exists a set S < {1,...,99} such that any two numbers from
S differ by at least 2 and m is obtained from m; by applying the permutations (j,j + 1),
j€S. Let r = min(S). If r = 2k — 1 is odd, then 7 and my induce two subpermutations of
{2k — 2,2k — 1,2k} (or of {1,2} for k = 1) of opposite parities. Thus r = 2k is even. Since
m and 7y induce subpermutations of the same (even) parity of {2k, 2k + 1,2k + 2}, we must
have 2k + 2 € S. Next, 2k +4 € S and so on, we get 98 € S, but then the parities of the
subpermutations of {9899, 100} in 7y, o are opposite. A contradiction. ]

Comment 2. In Solution 2 we only used that for each set from {1, 2}, {2, 3,4}, {4, 5,6}, ..., {98,99, 100}
any two rows of 7" induce a subpermutation of the same parity, not necessarily even.
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Geometry

Let ABCD be a parallelogram such that AC' = BC. A point P is chosen on the
extension of the segment AB beyond B. The circumcircle of the triangle AC'D meets the
segment PD again at (), and the circumcircle of the triangle AP() meets the segment PC
again at R. Prove that the lines C'D, AQ, and BR are concurrent.

Common remarks. The introductory steps presented here are used in all solutions below.

Since AC = BC = AD, we have ZABC = /BAC = LACD = ZADC. Since the
quadrilaterals APR(Q and AQCD are cyclic, we obtain

/CRA =180°— ZARP = 180° — LZAQP = /DQA = Z/DCA = ZCBA,
so the points A, B, C, and R lie on some circle ~.

Solution 1. Introduce the point X = AQ n CD; we need to prove that B, R and X are
collinear.
By means of the circle (APRQ)) we have

/RQX = 180° — ZAQR = /RPA = /RCX

(the last equality holds in view of AB || C'D), which means that the points C, @, R, and X
also lie on some circle 9.
Using the circles ¢ and v we finally obtain

LXRC =/XQC =180° - LCOQA = LADC = LBAC = 180° — ZCRB,

that proves the desired collinearity.

Solution 2. Let a denote the circle (APR(Q). Since
/CAP = /ACD = /AQD = 180° — Z AQP,

the line AC' is tangent to a.
Now, let AD meet « again at a point Y (which necessarily lies on the extension of DA
beyond A). Using the circle v, along with the fact that AC is tangent to «, we have

LARY = LZCAD = LZACB = ZARB,

so the points Y, B, and R are collinear.

Applying Pascal’s theorem to the hexagon AAY RPQ (where AA is regarded as the tangent
to o at A), we see that the points AAn RP =C, AY n PQ = D, and YR n QA are collinear.
Hence the lines CD, AQ, and BR are concurrent.
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Comment 1. Solution 2 consists of two parts: (1) showing that BR and DA meet on «; and (2)
showing that this yields the desired concurrency. Solution 3 also splits into those parts, but the proofs
are different.

Solution 3. As in Solution 1, we introduce the point X = AQ n C'D and aim at proving that
the points B, R, and X are collinear. As in Solution 2, we denote o = (APQR); but now we
define Y to be the second meeting point of RB with a.

Using the circle a and noticing that C'D is tangent to -, we obtain

/RYA=/RPA=/RCX = /RBC. (1)

So AY || BC, and hence Y lies on DA.

Now the chain of equalities (1) shows also that ZRY D = ZRCX, which implies that the
points C', D, Y, and R lie on some circle 5. Hence, the lines C'D, AQ, and Y BR are the
pairwise radical axes of the circles (AQCD), «, and 3, so those lines are concurrent.

Comment 2. The original problem submission contained an additional assumption that BP = AB.
The Problem Selection Committee removed this assumption as superfluous.
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Let ABCD be a convex quadrilateral circumscribed around a circle with centre I.
Let w be the circumcircle of the triangle ACI. The extensions of BA and BC beyond A and
C meet w at X and Z, respectively. The extensions of AD and C'D beyond D meet w at Y

and T, respectively. Prove that the perimeters of the (possibly self-intersecting) quadrilaterals
ADTX and CDY Z are equal.

Solution. The point [ is the intersection of the external bisector of the angle T'C'Z with the
circumcircle w of the triangle TC'Z, so I is the midpoint of the arc TCZ and IT = IZ.
Similarly, I is the midpoint of the arc YAX and IX = IY. Let O be the centre of w. Then X
and T are the reflections of Y and Z in 1O, respectively. So XT =Y Z.

Let the incircle of ABC'D touch AB, BC, CD, and DA at points P, (), R, and S, respec-
tively.

The right triangles /X P and IY S are congruent, since [P = IS and [ X = Y. Similarly,
the right triangles IRT and IQ)Z are congruent. Therefore, XP =Y S and RT = QZ.

Denote the perimeters of ADTX and CDY Z by Psprx and Popyz respectively. Since
AS = AP, CQ = RC, and SD = DR, we obtain

Piprx = XT +XA+AS+SD+DT =XT+ XP+ RT
=YZ+YS+QZ=YZ+YD+ DR+ RC+CZ = Pepyy,

as required.

Comment 1. After proving that X and 7" are the reflections of Y and Z in IO, respectively, one can
finish the solution as follows. Since XT = Y Z, the problem statement is equivalent to

XA+ AD+DT =YD+ DC+CZ. (1)

Since ABC'D is circumscribed, AB — AD = BC — C'D. Adding this to (1), we come to an equivalent
equality XA+ AB+ DT =YD+ BC+CZ, or

XB+DT =YD + BZ. (2)
Let A = % = %. Since X ACZ is cyclic, the triangles ZBX and ABC are similar, hence

XB BZ XZ _

BC - AB _ac ™
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It follows that X B = ABC and BZ = MAB. Likewise, the triangles TDY and ADC are similar, hence

DT DY TY
AD CD AC

Therefore, (2) rewrites as ABC + AAD = A\CD + \AB.
This is equivalent to BC' + AD = CD + AB which is true as ABCD is circumscribed.

A

Comment 2. Here is a more difficult modification of the original problem, found by the PSC.

Let ABCD be a convex quadrilateral circumscribed around a circle with centre I. Let w be the
circumcircle of the triangle ACI. The extensions of BA and BC beyond A and C meet w at X and
7, respectively. The extensions of AD and C'D beyond D meet w at Y and T, respectively. Let
U=BCnAD and V = BAn CD. Let Iy be the incentre of UY Z and let Jy be the V-excentre of
VXT. Then IyyJy 1 BD.
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Version 1. Let n be a fixed positive integer, and let S be the set of points (z,y) on the

Cartesian plane such that both coordinates x and y are nonnegative integers smaller than 2n

(thus |S| = 4n?). Assume that F is a set consisting of n? quadrilaterals such that all their

vertices lie in S, and each point in S is a vertex of exactly one of the quadrilaterals in F.
Determine the largest possible sum of areas of all n? quadrilaterals in F.

Version 2. Let n be a fixed positive integer, and let S be the set of points (x,y) on the
Cartesian plane such that both coordinates z and y are nonnegative integers smaller than 2n
(thus |S| = 4n?). Assume that F is a set of polygons such that all vertices of polygons in F lie
in S, and each point in S is a vertex of exactly one of the polygons in F.

Determine the largest possible sum of areas of all polygons in F.

Answer for both Versions: The largest possible sum of areas is ¥(n) := 3n*(2n+1)(2n—1).

Common remarks. Throughout all solutions, the area of a polygon P will be denoted by [P].

We say that a polygon is legal if all its vertices belong to S. Let O = (n — %, n— %) be the
centre of S. We say that a legal square is central if its centre is situated at O. Finally, say that
a set F of polygons is acceptable if it satisfies the problem requirements, i.e. if all polygons
in F are legal, and each point in S is a vertex of exactly one polygon in F. For an acceptable
set F, we denote by X(F) the sum of areas of polygons in F.

Solution 1, for both Versions. Each point in S is a vertex of a unique central square. Thus
the set G of central squares is acceptable. We will show that

N(F) < %(9) = X(n), (1)

thus establishing the answer.
We will use the following key lemma.

Lemma 1. Let P = AjA,... A, be a polygon, and let O be an arbitrary point in the plane.
Then
1 m
Pl < =) 0Az 2
P <5 3,042 )
moreover, if P is a square centred at O, then the inequality (2) turns into an equality.

Proof. Put A,,.1 = Ay. Foreach ¢ = 1,2,..., m, we have

. . 2 2
[OA;A; 1] < OA; 20A1+1 < OA; +4OAZ+1.

Therefore,

m 1 m
S04 +0m,) -1y on
i=1 i=1

A~

[P] < ) [0AA;i] <
=1

which proves (2). Finally, all the above inequalities turn into equalities when P is a square
centred at O. O]

Back to the problem, consider an arbitrary acceptable set F. Applying Lemma 1 to each
element in F and to each element in G (achieving equality in the latter case), we obtain

1 9
S(F) < 5/;SOA = %(G),

which establishes the left inequality in (1).
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It remains to compute 3(G). We have

1 12n—12n—1 1 2 1

_* 2 _ = b s

Z(g)—zzOA 22 Z((n 5 2) +<n 5~
A€eS i=0 5=0

n—1 n—1 < 2n

1 . 2 . 2
=§-4-2n2(2n—22—1) =n). (2j+1)°=n

B 2n(2ni:1)(4n+1) 4 n(njj-l)(Qn—l-l) _j’rl=(2n+]1=)(2n—1)_z
— (R UORED y nnt DEE D) )] g

Comment. There are several variations of the above solution, also working for both versions of the
problem. E.g., one may implement only the inequality [OA4;4;4+1] < 20A; - OA;41 to obtain

4n?

1
YF) < = K;-OL;,
(F) 2;10 O

where both (K;) and (L;) are permutations of all points in S. The right hand side can then be bounded
from above by means of the rearrangement inequality; the bound is also achieved on the collection G.

However, Version 2 seems to be more difficult than Version 1. First of all, the optimal model for
this version is much less easy to guess, until one finds an idea for proving the upper bound. Moreover,
Version 1 allows different solutions which do not seem to be generalized easily — such as Solution 2
below.

Solution 2, for Version 1. Let F be an accessible set of quadrilaterals. For every quadri-
lateral ABC'D in F write

. 2 2
[ABCD]:AC%Sm(bgAC%BDj (3)

where ¢ is the angle between AC and BD. Applying this estimate to all members in F we
obtain

1 2n?
S(F) <= AB?
(‘F) 4 Z:Z; 17

where Ay, As, ..., Agy2, B1, Bo, ..., By, is some permutation of S. For brevity, denote

f((Az‘), (Bz)) = Z AiBiQ.

The rest of the solution is based on the following lemma.

Lemma 2. The maximal value of f((4;), (B;)) over all permutations of S equals 3n*(4n* — 1)

and is achieved when A; is symmetric to B; with respect to O, for every i = 1,2,...,2n2.

Proof. Let A; = (ps, ;) and B; = (r;,s;), for i = 1,2,...,2n? We have
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it suffices to bound the first sum, the second is bounded similarly. This can be done, e.g., by
means of the QM—AM inequality as follows:

2n? 2n? 2n—1 2n?
Z(pi —ri)? = Z(pr +2r7 — (pi +13)?) = 4n Z j* - Z(pz +73)?
=1 =1 j=0 i=1

on—1 1 2n2 2 on—1 1 on—1 \ 2

.2 . 2 . .
<4nz.7 —ﬁ(Z:(er“i)) —4nZJ o2 (2” Z])
7=0 i=1 7=0 7=0
2n(2n —1)(4dn — 1 2n2(2n — 1)(2 1
i 2N D) g 21D

All the estimates are sharp if p; + r; = 2n — 1 for all 7. Thus,

(4. (my) < L),

and the estimate is sharp when p; + r;, = ¢; + s; = 2n — 1 for all 7, i.e. when A; and B; are
symmetric with respect to O. O]

Lemma 2 yields

4 3 N 3

S (F) < 1_4n2(4n2_1) n2(2n—1)(2n+1).

Finally, all estimates are achieved simultaneously on the set G of central squares.

Comment 2. Lemma 2 also allows different proofs. E.g., one may optimize the sum ), p;r; step
by step: if p; < p; and 7; < r;, then a swap 7; <> r; increases the sum. By applying a proper chain
of such replacements (possibly swapping elements in some pairs (p;,7;)), one eventually comes to a
permutation where p; + r; = 2n — 1 for all 4.

Comment 3. Version 2 can also be considered for a square grid with odd number n of points on each

side. If we allow a polygon consisting of one point, then Solution 1 is applied verbatim, providing an

answer %n2 (n? —1). If such polygons are not allowed, then one needs to subtract % from the answer.
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Let ABC'D be a quadrilateral inscribed in a circle 2. Let the tangent to 2 at D
intersect the rays BA and BC' at points E' and F, respectively. A point T is chosen inside the
triangle ABC so that TE || CD and TF || AD. Let K # D be a point on the segment DF
such that T'D = TK. Prove that the lines AC, DT and BK intersect at one point.

Solution 1. Let the segments TE and T'F cross AC at P and @, respectively. Since PE || CD
and ED is tangent to the circumcircle of ABC'D, we have

/EPA=/DCA = /EDA,

and so the points A, P, D, and E lie on some circle a. Similarly, the points C, @), D, and F
lie on some circle 7.

We now want to prove that the line DT is tangent to both o and v at D. Indeed, since
/FCD + ZEAD = 180°, the circles o and ~ are tangent to each other at D. To prove that
T lies on their common tangent line at D (i.e., on their radical axis), it suffices to check that
TP-TE =TQ-TF, or that the quadrilateral PEF (@) is cyclic. This fact follows from

/QFFE = /ADE = /APE.

Since T'D = TK, we have Z/TKD = /TDK. Next, as T'D and DF are tangent to o and (2,
respectively, we obtain
/TKD =/TDK = /EAD = /BDE,

which implies TK || BD.
Next we prove that the five points T, P, ), D, and K lie on some circle 7. Indeed, since
T'D is tangent to the circle o we have

LEPD = /TDF = /TKD,

which means that the point P lies on the circle (I'DK). Similarly, we have @) € (TDK).
Finally, we prove that PK || BC. Indeed, using the circles 7 and v we conclude that

LPKD = /PQD = /ZDFC,

which means that PK || BC.
Triangles TPK and DCB have pairwise parallel sides, which implies the fact that T'D, PC
and K B are concurrent, as desired.
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Comment 1. There are several variations of the above solution.
E.g., after finding circles « and 7, one can notice that there exists a homothety A mapping the
triangle T PQ to the triangle DC A; the centre of that homothety is Y = AC' n T'D. Since

/DPE = /DAE = /DCB = /DQT,

the quadrilateral TP D@ is inscribed in some circle 7. We have h(7) = Q, so the point D* = h(D) lies
on €.
Finally, by
/DCD* = /TPD = /BAD,

the points B and D* are symmetric with respect to the diameter of € passing through D. This yields
DB = DD* and BD* || EF, so h(K) = B, and BK passes through Y.

Solution 2. Consider the spiral similarity ¢ centred at D which maps B to F. Recall that
for any two points X and Y, the triangles DX ¢(X) and DY ¢(Y') are similar.
Define T" = ¢(E). Then

/CDF = /FBD = /$(B)BD = L$(E)ED = LT'ED,
so CD || T'E. Using the fact that DE is tangent to (ABD) and then applying ¢ we infer
/ADE = /ABD = /T'FD,
so AD || T'F’; hence T" coincides with T'. Therefore,
/BDE = /FDT = /DKT,

whence TK || BD.
Let BKnTD =X, ACnTD =Y, and AC nTF = Q. Notice that TK || BD implies

TX TK TD
XD BD BD
So we wish to prove that % is equal to the same ratio.
We first show that ¢(A) = Q. Indeed,

/DA$(A) = LDBF = /DAC,
and so ¢(A) € AC. Together with ¢(A) € ¢(EB) = TF this yields ¢(A) = Q. It follows that

TQ TD
AE ED’
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Now, since TF' || AD and AEAD ~ AEDB, we have

TY TQ TQ AE TD ED TD
YD AD AE AD ED BD BD’

which completes the proof.

Comment 2. The point D is the Miquel point for any 4 of the 5 lines BA, BC, TE, TF and AC.
Essentially, this is proved in both solutions by different methods.
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Lett ABC'D be a cyclic quadrilateral whose sides have pairwise different lengths. Let
O be the circumcentre of ABC'D. The internal angle bisectors of ZABC and ZADC meet AC
at By and Dy, respectively. Let Op be the centre of the circle which passes through B and is
tangent to AC' at D;. Similarly, let Op be the centre of the circle which passes through D and
is tangent to AC' at Bj.

Assume that BD; || DB;. Prove that O lies on the line OgOp.

Common remarks. We introduce some objects and establish some preliminary facts common
for all solutions below.

Let 2 denote the circle (ABCD), and let g and vp denote the two circles from the problem
statement (their centres are O and Op, respectively). Clearly, all three centres O, Og, and Op
are distinct.

Assume, without loss of generality, that AB > BC'. Suppose ‘3
that AD > DC, and let H = AC n BD. Then the rays BB,
and DD lie on one side of BD, as they contain the midpoints of Aﬂ&
the arcs ADC and ABC), respectively. However, if BD; || DBy, A ' ¢
then B; and D; should be separated by H. This contradiction
shows that AD < CD. (

Let vg and vp meet 2 again at Tg and Tp, respectively. The ‘
common chord BTy of 2 and g is perpendicular to their line of D

centres OgO; likewise, DTp 1 OpO. Therefore, O € OgOp < OO0 || OpO < BTpg ||
DTp, and the problem reduces to showing that

Comment 1. It seems that the discussion of the positions of points is necessary for both Solutions
below. However, this part automatically follows from the angle chasing in Comment 2.

Solution 1. Let the diagonals AC and BD cross at H. Consider the homothety h centred
at H and mapping B to D. Since BD; || DBy, we have h(D;) = Bj.
Let the tangents to Q at B and D meet AC at Lg and Lp, respectively. We have

/LLgBB, = /LgBC+ £CBB, = LBALg + /ByBA = /BB Lg,

which means that the triangle LgBB; is isosceles, LgB = LgB;. The powers of Lp with
respect to 2 and yp are Ly B? and LgB?%, respectively; so they are equal, whence Lp lies on
the radical axis TpD of those two circles. Similarly, Lp lies on the radical axis TgB of (2
and vg.

By the sine rule in the triangle BH Lg, we obtain

HLB BLB BlLB

= e . 2
sin/HBLg sin/BHLp sin/BHLg’ )

similarly,
HLp B DLp ~ DilLp 3)
sin/HDLp sin/DHLp sin/ZDHLp (

Clearly, /ZBHLg = ZDH Lp. In the circle €2, tangent lines BLg and DLp form equal angles
with the chord BD, so sin /HBLg = sin/HDLp (this equality does not depend on the
picture). Thus, dividing (2) by (3) we get

HLgp BiLp HLgy HLgp—B/Lgp HB;

HLp DiLp’ HLp HLp—D/Lp HD;
Since h(D;) = By, the obtained relation yields h(Lp) = Lg, so h maps the line LpB to LgD,
and these lines are parallel, as desired.

and hence
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Comment 2. In the solution above, the key relation h(Lp) = Lp was obtained via a short compu-
tation in sines. Here we present an alternative, pure synthetical way of establishing that.

Let the external bisectors of ZABC and ZADC cross AC at Bo and Do, respectively; assume that
AB > CB. In the right-angled triangle BB By, the point L is a point on the hypothenuse such that
LpBi = LB, so Lp is the midpoint of By B>.

Since DD is the internal angle bisector of ZADC, we have

/BDA-/CDB /BCA-/CAB

/ZBDD; =
2 2

= /BBsDy,

so the points B, Bo, D, and D, lie on some circle wg. Similarly, Lp is the midpoint of D;Ds, and the
points D, Do, B, and Bj lie on some circle wp.
Now we have

LBsDBy = /ByDB — /B1DB = /ByD1B — /B1DyB = ZDsBD;.

Therefore, the corresponding sides of the triangles DB Bs and BD1Ds are parallel, and the triangles
are homothetical (in H). So their corresponding medians DLp and BLp are also parallel.

Yet alternatively, after obtaining the circles wp and wp, one may notice that H lies on their radical
axis BD, whence HBy - HDy = HD¢ - HBs, or

HBy, HB;

HD, HD;’

Since h(D1) = By, this yields h(Ds) = By and hence h(Lp) = Lp.
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Comment 3. Since h preserves the line AC' and maps B +— D and Dy — By, we have h(yp) = vp.
Therefore, h(Op) = Op; in particular, H also lies on OgOp.

Solution 2. Let BD; and TgD; meet {2 again at Xz and Yp, respectively. Then
/BDC = /B1TgD, = /BTgYp = /BXgYp,

which shows that XpYp || AC. Similarly, let DB; and TpB; meet ) again at Xp and Yp,
respectively; then XpYp || AC.

Let Mp and Mp be the midpoints of the arcs ABC and ADC, respectively; then the
points Dy and Bj lie on DMp and BMpg, respectively. Let K be the midpoint of AC' (which
lies on MpMp). Applying Pascal’s theorem to MpDXpXpBMpg, we obtain that the points
Dy =MpDnXgB, By = DXpnBMg, and XpXg n MgMp are collinear, which means that
XpXp passes through K. Due to symmetry, the diagonals of an isosceles trapezoid XY XpYp
cross at K.

Mp

_D;l\ K.._-". 5

N
N
N
K43
0 N s
N
FIN
S ~
K ~

Let b and d denote the distances from the lines XgYp and XpYp, respectively, to AC. Then

we get
XgYp b D1 Xp

XpYp d B Xp’
where the second equation holds in view of D1 Xp || B1Xp. Therefore, the triangles D1 XpYp
and B1 XpYp are similar. The triangles D1 TgB and BTpD are similar to them and hence to
each other. Since BD; || DBy, these triangles are also homothetical. This yields BTp || DTp,
as desired.

Comment 4. The original problem proposal asked to prove that the relations BD; || DB; and
O € 0104 are equivalent. After obtaining BD; || DB; = O € 0103, the converse proof is either
repeated backwards mutatis mutandis, or can be obtained by the usual procedure of varying some
points in the construction.

The Problem Selection Committee chose the current version, because it is less technical, yet keeps
most of the ideas.
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Determine all integers n > 3 satisfying the following property: every convex n-gon
whose sides all have length 1 contains an equilateral triangle of side length 1.
(Every polygon is assumed to contain its boundary.)

Answer: All odd n > 3.

Solution. First we show that for every even n > 4 there exists a polygon violating the required
statement. Consider a regular k-gon AgAy, ... Ay with side length 1. Let By, By, ..., B,
be the points symmetric to A, Ay, ..., A,p—1 with respect to the line AgA, . Then P =
AgA1Ay .. Ao 1 AvpaBrjp1Bya—s ... BoBy is a convex n-gon whose sides all have length 1.
If k is big enough, P is contained in a strip of width 1/2, which clearly does not contain any
equilateral triangle of side length 1.

A1 A2 o An/2—1
s A
B B - Bn/271

Assume now that n = 2k+1. As the case k = 1 is trivially true, we assume k > 2 henceforth.
Consider a convex (2k + 1)-gon P whose sides all have length 1. Let d be its longest diagonal.
The endpoints of d split the perimeter of P into two polylines, one of which has length at least
k + 1. Hence we can label the vertices of P so that P = AgA;... Ay, and d = AgA, with
¢ =k + 1. We will show that, in fact, the polygon AgA; ... A, contains an equilateral triangle
of side length 1.

Suppose that ZA,AgA; = 60°. Since d is the longest diagonal, we have A; A, < AyAy,
so LAgA1Ay = LAAGAT = 60°. Tt follows that there exists a point X inside the triangle
AgA;1 Ay such that the triangle AqgA; X is equilateral, and this triangle is contained in P. Similar
arguments apply if ZA, 1A,Ay = 60°.

A A
1

Arq
X

Ao
From now on, assume £ A;AgA; < 60° and A,_1 A, Ay < 60°.
Consider an isosceles trapezoid AgY ZA, such that AgA, || YZ, A)Y = ZA, = 1, and
LAAY = L ZAAg = 60°. Suppose that AgA; ... Ay is contained in AgY ZA,. Note that the
perimeter of AgA;... A, equals £ + AygA, and the perimeter of AjY ZA, equals 24,4, + 1.

Ay

Al A2 Am Ag,1

Ay ‘A,

Recall a well-known fact stating that if a convex polygon P; is contained in a convex
polygon P,, then the perimeter of P; is at most the perimeter of P,. Hence we obtain

0+ AgAp < 2A0A0+ 1, ie. £ —1< AgA,.
On the other hand, the triangle inequality yields
A(]Ag < AgAg+1 + Ag+1Ag+2 + ...+ AQkAO =2k+1—-0</(— 1,

which gives a contradiction.
Therefore, there exists a vertex A,, of AgA; ... A, which lies outside AgY ZA,. Since

LAngAl < 60° = LA[A(]Y and Ag,1A3A0 < 60° = LZA@A(), (1)
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the distance between A,, and AgA, is at least v/3/2.

Let P be the projection of A, to AgA,. Then PA,, = +/3/2, and by (1) we have AP > 1/2
and PA, > 1/2. Choose points Q € AgP, R € PA,, and S € PA,, such that PQ) = PR = 1/2
and PS = /3/2. Then QRS is an equilateral triangle of side length 1 contained in AyA; ... A,.

A
Y A
. A2 S
M
Ao Q P R Ae

Comment. In fact, for every odd n a stronger statement holds, which is formulated in terms defined
in the solution above: there exists an equilateral triangle A;A;. 1B contained in AgA; ... Ay for some
0 < i < £. We sketch an indirect proof below.

As above, we get ZApAgA; < 60° and Ay 1ApAg < 60°. Choose an index m € [1,¢— 1] maximising
the distance between A,, and AygA,. Arguments from the above solution yield 1 < m < £ — 1. Then
L AgAm 1Ay > 120° and LA, 1AnAr > LAgAn Ay = 60°. We construct an equilateral triangle
Apm—1An B as in the figure below. If B lies in AgA,,—14,, Ay, then we are done. Otherwise B and A,,
lie on different sides of AgAy. As before, let P be the projection of A,, to AgAy. We will show that

AgAl + A1As + ...+ Ay 1Ay < AgP + 1/2 (2)

Am+1

A Ay
There exists a point C' on the segment Ay P such that ZA,,_1CP = 60°. Construct a parallelogram
AgCA;,—1 K. Then the polyline AygA; ... A,,—1 is contained in the triangle A,,_1 K Ag, so

AgA1 + A1As + ...+ Ay 0Ay 1+ A 1Ay K AK + KA1 + Apc1Ay, = AgC + CAp1 + 1.

To prove (2), it suffices to show that CA,,—1 < CP — 1/2. Let the line through B parallel to C'P
intersect the rays A,, 1C and A,,P at D and T, respectively. It is easy to see that the desired
inequality will follow from DA,,_; < DT — 1/2.

Two possible arrangements of points are shown in the figures below.

Observe that ZDA,,,—1B = 60°, so there is a point M on the segment DB such that the triangle
DMA,, 1 is equilateral. Then ZA,, {MD =60° =LA, 1AnB, so A, 1MBA,, is a cyclic quadri-
lateral. Therefore, ZA,, M B = 60°. Thus, T lies on the ray M B and we have to show that MT > 1/2.
Indeed, MT = A,,M/2 and A,,M > A,,B = 1. This completes the proof of the inequality (2).

Am
/\Am
Amfl }
C rP Am—l
i \ zz / C dp
M T B

D
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Similarly, either there exists an equilateral triangle A,, A,,.1B’ contained in AgA; ... Ay, or
ApApi1 + Ams1Amas + .0+ Ay 1Ay < ApP + 1/2. (3)

Adding (2) and (3) yields AgA; + A1 Ay + ... + Ap_1A; < AgAp + 1, which gives a contradiction.
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A point D is chosen inside an acute-angled triangle ABC with AB > AC' so that
/BAD = /ZDAC. A point E is constructed on the segment AC so that ZADE = /DCB.
Similarly, a point F' is constructed on the segment AB so that ZADF = /ZDBC. A point
X is chosen on the line AC so that CX = BX. Let O; and O, be the circumcentres of the
triangles ADC and DX FE. Prove that the lines BC, EF, and O;0, are concurrent.

Common remarks. Let @) be the isogonal conjugate of D with respect to the triangle ABC.
Since ZBAD = /ZDAC, the point () lies on AD. Then ZQBA = Z/DBC = ZFDA, so the
points ), D, F', and B are concyclic. Analogously, the points ), D, E, and C are concyclic.
Thus AF - AB = AD - AQ) = AFE - AC' and so the points B, F, E/, and C are also concyclic.

Let T be the intersection of BC' and F'E.
Claim. TD* =TB-TC =TF -TE.
Proof. We will prove that the circles (DEF) and (BDC) are tangent to each other. Indeed,
using the above arguments, we get

/BDF = /AFD — /ZABD = (180° — ZFAD — /FDA) — (/ABC — /DBC)
— 180°—~ZFAD—/ABC = 180°~/DAE—/FEA = /FED+/ADE = /FED+/DCB,

which implies the desired tangency.

Since the points B, C', F/, and F" are concyclic, the powers of the point 7" with respect to the
circles (BDC') and (EDF) are equal. So their radical axis, which coincides with the common
tangent at D, passes through 7', and hence TD?> =TE -TF =TB -TC. O

Solution 1. Let T'A intersect the circle (ABC) again at M. Due to the circles (BCEF)
and (AMCB), and using the above Claim, we get TM -TA=TF -TE =TB-TC = TD? in
particular, the points A, M, F, and F are concyclic.

Under the inversion with centre T" and radius 7°'D, the point M maps to A, and B maps to
C, which implies that the circle (M BD) maps to the circle (ADC). Their common point D
lies on the circle of the inversion, so the second intersection point K also lies on that circle,
which means TK = T'D. It follows that the point 7" and the centres of the circles (KDE)
and (ADC) lie on the perpendicular bisector of K D.

Since the center of (ADC) is Oy, it suffices to show now that the points D, K, E, and X
are concyclic (the center of the corresponding circle will be O,).

The lines BM, DK, and AC' are the pairwise radical axes of the circles (ABCM), (ACDK)
and (BM DK), so they are concurrent at some point P. Also, M lies on the circle (AEF), thus

$(EX,XB) = (CX,XB) = ¥(XC, BC) + %(BC, BX) = 2%(AC,CB)
— X(AC,CB) + x(EF,FA) = x(AM, BM) + ¥(EM, MA) = <(EM, BM),

so the points M, E, X, and B are concyclic. Therefore, PE- PX = PM - PB = PK - PD, so
the points E, K, D, and X are concyclic, as desired.
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e

Comment 1. We present here a different solution which uses similar ideas.

Perform the inversion ¢ with centre T" and radius T'D. It swaps B with C' and E with F’; the point
D maps to itself. Let X’ = +(X). Observe that the points F, F', X, and X’ are concyclic, as well as
the points B, C', X, and X'. Then

X(CX"X'F)=x(CX"X'X)+x(X'X,X'F) = x(CB,BX) + ¥(EX,EF)
= X(XC,CB) + ¥x(EC,EF) = ¥x(CA,CB) + ¥x(BC,BF) = £(CA, AF),

therefore the points C, X', A, and F are concyclic.
Let X'F intersect AC at P, and let K be the second common point of DP and the circle (ACD).

Then
PK .-PD = PA-PC = PX'-PF = PE - PX;

hence, the points K, X, D, and FE lie on some circle wy, while the points K, X', D, and F lie on some
circle wy. (These circles are distinct since ZEXF + ZEDF < ZEAF + ZDCB + ZDBC < 180°).
The inversion ¢ swaps wy with wo and fixes their common point D, so it fixes their second common
point K. Thus T'D = T K and the perpendicular bisector of DK passes through T, as well as through
the centres of the circles (CDKA) and (DEKX).

X~
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Solution 2. We use only the first part of the Common remarks, namely, the facts that the
tuples (C,D,Q, FE) and (B,C,E, F) are both concyclic. We also introduce the point T =
BC n EF. Let the circle (CDE) meet BC' again at E;. Since ZE,CQ) = LDCE, the arcs DE
and QF; of the circle (CDQ) are equal, so DQ || EE;.

Since BF'EC'is cyclic, the line AD forms equal angles with BC' and E'F', hence so does E'E.
Therefore, the triangle FF,T is isosceles, TE = T'Fy, and T lies on the common perpendicular
bisector of EF; and DQ.

Let U and V' be the centres of circles (ADFE) and (CDQFE), respectively. Then UO; is the
perpendicular bisector of AD. Moreover, the points U, V', and Oy belong to the perpendicular
bisector of DE. Since UO; || VT, in order to show that O;0; passes through 7', it suffices to

show that
O,U _ OU

= . 1

0O,V TV (1)

Denote angles A, B, and C of the triangle ABC by «, 3, and ~, respectively. Projecting
onto AC' we obtain

QU (XE—-AE)2 AX AX _ sin(y —f)

0,V (XE+EC))2 CX BX  sina

(2)

The projection of O1U onto AC'is (AC' — AE)/2 = C'E/2; the angle between O;U and AC
is 90° — /2, so
OU 1
EC — 2sin(a/2) 3)

Next, we claim that E, V, C, and T are concyclic. Indeed, the point V' lies on the per-
pendicular bisector of CE, as well as on the internal angle bisector of ZCTF. Therefore, V'
coincides with the midpoint of the arc CE of the circle (TCE).

Now we have ZEVC = 2/EE,C = 180°—(y—p) and ZVET = /VE\T =90°—/ZE,EC =
90° — a/2. Therefore,

EC  sinZETC  sin(y — )

(4)

TV ~— sinZVET  cos(a/2)




Shortlisted problems — solutions 63

Recalling (2) and multiplying (3) and (4) we establish (1):
O.U  sin(y — f3) 1 sin(y—8)  O,U EC OU

O,V sina 2sin(a/2)  cos(a/2)  EC TV TV’

Solution 3. Notice that ZAQF = ZQCB and ZAQF = ZQBC so, if we replace the point D
with @ in the problem set up, the points E, F', and T remain the same. So, by the Claim, we
have TQ?* = TB -TC = TD?.

Thus, there exists a circle I' centred at T" and passing through D and ). We denote the
second meeting point of the circles I" and (ADC') by K. Let the line AC meet the circle (DEK)
again at Y'; we intend to prove that Y = X. As in Solution 1, this will yield that the point T,
as well as the centres O; and O,, all lie on the perpendicular bisector of DK.

Let L = AD n BC. We perform an inversion centred at C; the images of the points
will be denoted by primes, e.g., A’ is the image of A. We obtain the following configuration,
constructed in a triangle A'C'L'.

The points D’ and Q" are chosen on the circumcircle 2 of A'L'C such that <(L'C,D'C) =
x(Q'C, A'C), which means that A'L" || D'Q’. The lines D'Q’ and A'C meet at E'.

A circle TV centred on C'L’ passes through D’ and @'. Notice here that B’ lies on the
segment C'L’, and that ZA'B'C' = /BAC =2/ LAC =2/A'L'C, so that B'L’ = B’A’, and B’
lies on the perpendicular bisector of A’L’ (which coincides with that of D’Q’). All this means
that B’ is the centre of I".

Finally, K’ is the second meeting point of A’D’ and I, and Y’ is the second meeting
point of the circle (D'K’E’) and the line A'E’, We have <(Y'K',K'A") = <x(Y'E',E'D’") =
X(Y'A', A'L'), so A'L' is tangent to the circumcircle w of the triangle Y’ A'K’.

Let O and O* be the centres of ) and w, respectively. Then O*A" 1 AL’ J_i’O). The
projections of vectors O*A" and B'O onto K'D’ are equal to K'A’/2 = K'D'/2 — A'D'/2. So
OTA7 = B—'O), Muivalently_)ATO) = O”‘—B7 Projecting this equality onto A’C', we see that the
projection of O*B’ equals A'C//2. Since O* is projected to the midpoint of A’Y”, this yields
that B’ is projected to the midpoint of CY”’, ie., B'Y' = B'C and £B'Y'C = £ZB'CY’. In
the original figure, this rewrites as ZCBY = ZBCY, so Y lies on the perpendicular bisector
of BC, as desired.

L'\

Comment 2. The point K appears to be the same in Solutions 1 and 3 (and Comment 1 as well).
One can also show that K lies on the circle passing through A, X, and the midpoint of the arc BAC.
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Comment 3. There are different proofs of the facts from the Common remarks, namely, the cyclicity
of B, C, F, and F, and the Claim. We present one such alternative proof here.

We perform the composition ¢ of a homothety with centre A and the reflection in AD, which maps
E to B. Let U = ¢(D). Then x(BC,CD) = x(AD,DFE) = £(BU,UD), so the points B, U, C,
and D are concyclic. Therefore, x(CU,UD) = x(CB,BD) = x(AD,DF), so ¢(F) = C. Then the
coefficient of the homothety is AC/AF = AB/AFE, and thus points C, E, F, and B are concyclic.

Denote the centres of the circles (EDF') and (BUCD) by O3z and Oy, respectively. Then ¢(O3) =
Oy, hence x(0O3D,DA) = —x(0O4U,UA) = £(04D, DA), whence the circle (BDC) is tangent to the
circle (EDF).

Now, the radical axes of circles (DEF'), (BDC) and (BCEF) intersect at T', and the claim follows.

This suffices for Solution 1 to work. However, Solutions 2 and 3 need properties of point @,
established in Common remarks before Solution 1.

Comment 4. In the original problem proposal, the point X was hidden. Instead, a circle v was
constructed such that D and FE lie on 7, and its center is collinear with O; and T. The problem
requested to prove that, in a fixed triangle ABC', independently from the choice of D on the bisector
of ZBAC, all circles 7 pass through a fixed point.
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Let w be the circumcircle of a triangle ABC', and let €24 be its excircle which is tangent
to the segment BC'. Let X and Y be the intersection points of w and Q4. Let P and @ be the
projections of A onto the tangent lines to {24 at X and Y, respectively. The tangent line at P

to the circumcircle of the triangle APX intersects the tangent line at () to the circumcircle of
the triangle AQY at a point R. Prove that AR | BC.

Solution 1. Let D be the point of tangency of BC and Q4. Let D’ be the point such that
DD’ is a diameter of Q4. Let R’ be (the unique) point such that AR" | BC and R'D’ || BC.
We shall prove that R’ coincides with R.

Let PX intersect AB and D'R’ at S and T, respectively. Let U be the ideal common
point of the parallel lines BC' and D'R’. Note that the (degenerate) hexagon ASXTUC is
circumscribed around €24, hence by the Brianchon theorem AT, SU, and XC' concur at a
point which we denote by V. Then VS || BC. Tt follows that «(SV,VX) = x(BC,CX) =
X(BA, AX), hence AXSV is cyclic. Therefore, £x(PX,XA) = x(SV,VA) = x(R'T,TA).
Since LZAPT = ZAR'T = 90°, the quadrilateral APR'T is cyclic. Hence,

X(XA,AP) =90° — <(PX,XA) =90° — x(R'T,TA) = £x(TA,AR) = ¥x(TP, PR).

It follows that PR’ is tangent to the circle (APX).
Analogous argument shows that QR is tangent to the circle (AQY'). Therefore, R = R’
and AR | BC.

/ Q4

T\ R D

Comment 1. After showing <(PX, XA) = x(R'T, T A) one can finish the solution as follows. There
exists a spiral similarity mapping the triangle ATR' to the triangle AXP. So the triangles AT X
and AR'P are similar and equioriented. Thus, ¥(TX, XA) = x(R'P, PA), which implies that PR’ is
tangent to the circle (APX).

Solution 2. Let J and r be the center and the radius of {24. Denote the diameter of w by d
and its center by O. By Euler’s formula, OJ? = (d/2)? + dr, so the power of J with respect to
w equals dr.
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Let JX intersect w again at L. Then JL = d. Let LK be a diameter of w and let M be
the midpoint of JK. Since JL = LK, we have ZLMK = 90°, so M lies on w. Let R’ be the
point such that R'P is tangent to the circle (APX) and AR’ L BC. Note that the line AR’ is
symmetric to the line AO with respect to AJ.

Lemma. Let M be the midpoint of the side JK in a triangle AJK. Let X be a point on the
circle (AMK) such that ZJX K = 90°. Then there exists a point 7" on the line KX such that
the triangles AKJ and AJT are similar and equioriented.

Proof. Note that M X = M K. We construct a parallelogram AJNK. Let T be a point on KX
such that <(NJ, JA) = x(KJ, JT). Then

X(JN,NA) = x(KA,AM) = x(KX,XM) = x(MK,KX) = ¥(JK,KT).

So there exists a spiral similarity with center J mapping the triangle AJN to the triangle
TJK. Therefore, the triangles NJK and AJT are similar and equioriented. It follows that the
triangles AKJ and AJT are similar and equioriented. ]
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Back to the problem, we construct a point 7" as in the lemma. We perform the composition
¢ of inversion with centre A and radius AJ and reflection in AJ. It is known that every triangle
AFEF is similar and equioriented to A¢(F)p(E).

So ¢(K) =T and ¢(T) = K. Let P* = ¢(P) and R* = ¢(R’). Observe that ¢(TK) is a
circle with diameter AP*. Let AA’ be a diameter of w. Then P*K 1 AK 1 A'K, so A’ lies on
P*K. The triangles AR'P and AP*R* are similar and equioriented, hence

X (AAA'P*) = x(AA, A'K) = ¥(AX, XP) = ¥x(AX,XP) = £x(AP, PR") = ¥x(AR*, R* P*),

so A, A', R*, and P* are concyclic. Since A’ and R* lie on AO, we obtain R* = A’. So
R = ¢(A), and ¢(A")P is tangent to the circle (APX).

An identical argument shows that ¢(A")@ is tangent to the circle (AQY'). Therefore, R =
¢(A") and AR | BC.

Comment 2. One of the main ideas of Solution 2 is to get rid of the excircle, along with points B
and C. After doing so we obtain the following fact, which is, essentially, proved in Solution 2.

Let w be the circumcircle of a triangle AK; K. Let J be a point such that the midpoints of JK;
and J K5 lie on w. Points X and Y are chosen on w so that ZJXK; = ZJY Ko = 90°. Let P and @Q be
the projections of A onto X K7 and Y Ko, respectively. The tangent line at P to the circumcircle of the
triangle APX intersects the tangent line at @ to the circumcircle of the triangle AQY at a point R.
Then the reflection of the line AR in AJ passes through the centre O of w.
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Number Theory

Determine all integers n > 1 for which there exists a pair of positive integers (a,b)
such that no cube of a prime divides a? + b + 3 and

ab+3b+8

a?+b+3

Answer: The only integer with that property is n = 2.
Solution. As b= —a® — 3 (mod a? + b + 3), the numerator of the given fraction satisfies
ab+3b+8=a(—a®>—3)+3(—a*-3) +8=—(a+1)* (moda®+b+3).

As a? + b + 3 is not divisible by p? for any prime p, if a® + b + 3 divides (a + 1)? then it does
also divide (a + 1). Since
0<(a+1)?<2(a®>+b+3),

we conclude (a+1)? = a® +b+ 3. This yields b = 2(a — 1) and n = 2. The choice (a,b) = (2,2)
with a? + b + 3 = 9 shows that n = 2 indeed is a solution.
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Let n > 100 be an integer. The numbers n,n + 1,...,2n are written on n + 1 cards,
one number per card. The cards are shuffled and divided into two piles. Prove that one of the
piles contains two cards such that the sum of their numbers is a perfect square.

Solution. To solve the problem it suffices to find three squares and three cards with numbers
a, b, c on them such that pairwise sums a + b,b + ¢, a + ¢ are equal to the chosen squares. By
choosing the three consecutive squares (2k — 1), (2k)?, (2k + 1)? we arrive at the triple

(a,bc) = (2k* — 4k, 2k>+1, 2k°+4k).
We need a value for k such that
n<2k*—4k, and 2k* + 4k < 2n.

A concrete k is suitable for all n with

ne [k* + 2k, 2k — 4k + 1| =: I,.
For k£ > 9 the intervals [ and [, overlap because

(E+1)*+2(k+1) <2k* —4k + 1.
Hence Iy U I1p U ... =[99,0), which proves the statement for n > 99.

Comment 1. There exist approaches which only work for sufficiently large n.

One possible approach is to consider three cards with numbers 70k2,99k2,126k? on them. Then
their pairwise sums are perfect squares and so it suffices to find k such that 70k% > n and 126k% < 2n
which exists for sufficiently large n.

Another approach is to prove, arguing by contradiction, that a and a — 2 are in the same pile
provided that n is large enough and a is sufficiently close to n. For that purpose, note that every pair
of neighbouring numbers in the sequence a, 2% —a, a+ (2 +1), 22 + 22 +3 —a,a—2 adds up to a perfect
square for any z; so by choosing z = [v/2a| + 1 and assuming that n is large enough we conclude that
a and a — 2 are in the same pile for any a € [n + 2,3n/2]. This gives a contradiction since it is easy to
find two numbers from [n + 2,3n/2] of the same parity which sum to a square.

It then remains to separately cover the cases of small n which appears to be quite technical.

Comment 2. An alternative formulation for this problem could ask for a proof of the statement
for all n > 10%. An advantage of this formulation is that some solutions, e.g. those mentioned in
Comment 1 need not contain a technical part which deals with the cases of small n. However, the
original formulation seems to be better because the bound it gives for n is almost sharp, see the next
comment for details.

Comment 3. The statement of the problem is false for n = 98. As a counterexample, the first pile
may contain the even numbers from 98 to 126, the odd numbers from 129 to 161, and the even numbers
from 162 to 196.
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Find all positive integers n with the following property: the k positive divisors of n
have a permutation (dy, ds, ..., dy) such that for every i = 1,2, ... k, the number d; + --- + d;
is a perfect square.

Answer: n=1and n = 3.

Solution. For i = 1,2,...,k let d; + ... +d; = s?, and define sy = 0 as well. Obviously
0=159 <51 <89 <...< S, SO

S; = 1 and dz = 822 — 822_1 = (Si + 82‘_1)(82‘ — 82‘_1) =8+ 81 = 21 — 1. (1)

The number 1 is one of the divisors di,...,d; but, due to d; = 2¢ — 1, the only possibility
is dl = 1.

Now consider dy and sy > 2. By definition, dy = s3 — 1 = (53 — 1)(s3 + 1), so the numbers
sy — 1 and sy + 1 are divisors of n. In particular, there is some index j such that d; = s, + 1.

Notice that
So+s1=s3+1=d; =>s;+5_1; (2)

since the sequence sy < s; < ... < s, increases, the index j cannot be greater than 2. Hence,
the divisors s — 1 and s, + 1 are listed among d; and d,. That means sy — 1 = d; = 1 and
S9 + 1 = dy; therefore sy = 2 and dy = 3.

We can repeat the above process in general.

Claim. d; =2t —1and s; =i fori=1,2,... k.

Proof. Apply induction on i. The Claim has been proved for ¢ = 1,2. Suppose that we have
already proved d =1, dy = 3, ..., d; = 2¢ — 1, and consider the next divisor d;,1:

diy1 = s}y — 57 = st — 10 = (5001 — 1) (5041 +9).

The number s, + 7 is a divisor of n, so there is some index j such that d; = s;;1 + 1.
Similarly to (2), by (1) we have

Siy1 + 8 = Sip1 Hi=dj = 8; + 8j1; (3)
since the sequence sy < s1 < ... < s increases, (3) forces j < i+ 1. On the other hand,
dj = Siy1+1 > 20 >d; > diy > ... > dy, soj < iis not possible. The only possibility is
j=1+1

Hence,
Siv1 +i=diy) =81, — ;=55 — i
S?+1 — Sit1 = Z('l + 1)
By solving this equation we get s;;1 =4 + 1 and d;;; = 2¢ + 1, that finishes the proof. O
Now we know that the positive divisors of the number n are 1,3,5,...,n—2,n. The greatest

divisor is dp = 2k — 1 = n itself, so n must be odd. The second greatest divisor is dj_; = n —2;
then n — 2 divides n = (n —2) + 2, so n — 2 divides 2. Therefore, n must be 1 or 3.

The numbers n = 1 and n = 3 obviously satisfy the requirements: for n = 1 we have k =1
and d; = 1%;forn =3 we have k =2, d; =12 and d; +dy =1 + 3 = 2.
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N4. Alice is given a rational number r > 1 and a line with two points B # R, where
point R contains a red bead and point B contains a blue bead. Alice plays a solitaire game by
performing a sequence of moves. In every move, she chooses a (not necessarily positive) integer
k, and a bead to move. If that bead is placed at poin_t)X, and the other bead is placed at Y,
then Alice moves the chosen bead to point X’ with Y.X' = r* YX.

Alice’s goal is to move the red bead to the point B. Find all rational numbers r» > 1 such
that Alice can reach her goal in at most 2021 moves.

Answer: All 7 = (b+1)/b with b =1,...,1010.

Solution. Denote the red and blue beads by R and B, respectively. Introduce coordinates
on the line and identify the points with their coordinates so that R = 0 and B = 1. Then,
during the game, the coordinate of R is always smaller than the coordinate of B. Moreover,
the distance between the beads always has the form r’ with ¢ € Z, since it only multiplies
by numbers of this form. Denote the value of the distance after the m'™ move by d,, = rom=
m=0,1,2,... (after the 0" move we have just the initial position, so oy = 0).

If some bead is moved in two consecutive moves, then Alice could instead perform a single
move (and change the distance from d; directly to d; o) which has the same effect as these two
moves. So, if Alice can achieve her goal, then she may as well achieve it in fewer (or the same)
number of moves by alternating the moves of B and R. In the sequel, we assume that Alice
alternates the moves, and that R is shifted altogether ¢ times.

If R is shifted in the m'™ move, then its coordinate increases by d,, — d,,+1. Therefore, the
total increment of R’s coordinate, which should be 1, equals

t—1
either (do — dl) + (dg — dg) I (dgt_g — dgt_l) =1 + TOQ" — Z Ta%_l,
=1 =1
t t
or (dl - dg) + (dg — d4) + -+ (dgt_l - dgt) = ZTGQi_I — Z ’I“am,

depending on whether R or B is shifted in the first move. Moreover, in the former case we
should have t < 1011, while in the latter one we need ¢t < 1010. So both cases reduce to an
equation

n—

n 1
Zrﬁi = Z T%a Bl”YZ € Z) (]-)
=1 =1

for some n < 1011. Thus, if Alice can reach her goal, then this equation has a solution for
n = 1011 (we can add equal terms to both sums in order to increase n).

Conversely, if (1) has a solution for n = 1011, then Alice can compose a corresponding
sequence of distances dy, dq,ds, ..., dsg1 and then realise it by a sequence of moves. So the
problem reduces to the solvability of (1) for n = 1011.

Assume that, for some rational r, there is a solution of (1). Write r in lowest terms as
r = a/b. Substitute this into (1), multiply by the common denominator, and collect all terms
on the left hand side to get

2n—1
M(=1ia N =0, pe{0,1,..., N}, (2)
i=1

for some N > 0. We assume that there exist indices j_ and j; such that p;_ = 0 and p;, = V.
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Reducing (2) modulo a — b (so that a = b), we get

2n—1 2n—1
0= > (=D)fa"dp"# = > (~=1)p " = =b" mod (a—1b).
i=1 =1

Since ged(a — b, b) = 1, this is possible only if a — b = 1.
Reducing (2) modulo a + b (so that a = —b), we get

2n—1 2n—1
0= Z (—l)ia’“bN_’“ = Z (_1)i(_1)uibmbN—ui — SoV  mod (a 4 b)
i=1 i=1

for some odd (thus nonzero) S with |S| < 2n — 1. Since ged(a + b, b) = 1, this is possible only
ifa+b|S. Soa+b<2n—1,and hence b=a—1<n—1=1010.

Thus we have shown that any sought r has the form indicated in the answer. It remains to
show that for any b =1,2,...,1010 and a = b + 1, Alice can reach the goal. For this purpose,

in(l)weputn=a,B=pF==F=0andyy=rn==5=1

Comment 1. Instead of reducing modulo a + b, one can reduce modulo a and modulo b. The first
reduction shows that the number of terms in (2) with u; = 0 is divisible by a, while the second shows
that the number of terms with p; = N is divisible by b.

Notice that, in fact, N > 0, as otherwise (2) contains an alternating sum of an odd number of
equal terms, which is nonzero. Therefore, all terms listed above have different indices, and there are
at least a + b of them.

Comment 2. Another way to investigate the solutions of equation (1) is to consider the Laurent

polynomial
n n—1
L(z) = Z 2P — Z 7
i=1 i=1

We can pick a sufficiently large integer d so that P(z) = x?L(x) is a polynomial in Z[z]. Then
P(1) =1, (3)

and
1 < |P(—1)] < 2021. (4)

If r = p/q with integers p > ¢ > 1 is a rational number with the properties listed in the problem
statement, then P(p/q) = L(p/q) = 0. As P(x) has integer coefficients,

(p = gqz) | P(z). (5)

Plugging = = 1 into (5) gives (p — q) | P(1) = 1, which implies p = ¢ + 1. Moreover, plugging x = —1
into (5) gives (p + q) | P(—1), which, along with (4), implies p + ¢ < 2021 and ¢ < 1010. Hence
x = (q + 1)/q for some integer ¢ with 1 < ¢ < 1010.
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Prove that there are only finitely many quadruples (a, b, ¢, n) of positive integers such
that

n' _ anfl + bnfl + Cnfl.

Solution. For fixed n there are clearly finitely many solutions; we will show that there is no
solution with n > 100. So, assume n > 100. By the AM—GM inequality,

n!=2nn—1)n—-2)(n—3)-(3-4---(n—4))
<2(n—1)* <3+"T'l+_(6n—4)>"_6 9 1) (n; 1)"—6 5 (n; 1>n—17

thus a,b,¢ < (n —1)/2.
For every prime p and integer m # 0, let v,(m) denote the p-adic valuation of m; that is,
the greatest non-negative integer k for which p* divides m. Legendre’s formula states that

woy = 3| 2.

s
s=1 p

and a well-know corollary of this formula is that

0

vp(nl) < Z L—— (@)

If n is odd then a1, b" ! ¢" ! are squares, and by considering them modulo 4 we conclude
that a, b and ¢ must be even. Hence, 27! | n! but that is impossible for odd n because
va(n!) =va((n—1)!) <n—1by (V).

From now on we assume that n is even. If all three numbers a4+ b, b+ ¢, c+ a are powers of 2
then a, b, c have the same parity. If they all are odd, then n! = @' + v"~! + ¢"~! is also odd
which is absurd. If all a, b, ¢ are divisible by 4, this contradicts v»(n!) < n — 1. If, say, a is not
divisible by 4, then 2a = (a+b) + (a +c¢) — (b+ ¢) is not divisible by 8, and since all a +b, b+ ¢,
¢+ a are powers of 2, we get, that one of these sums equals 4, so two of the numbers of a, b, ¢ are
equal to 2. Say, a = b = 2, then ¢ = 2" — 2 and, since c | n!, we must have ¢ | " + b1 = 27
implying r = 2, and so ¢ = 2, which is impossible because n! = 0% 3 -2"~! (mod 5).

So now we assume that the sum of two numbers among a, b, ¢, say a + b, is not a power of 2,
so it is divisible by some odd prime p. Then p < a+b <mn and so ¢* ' =n! — (a" 1 + ") is
divisible by p. If p divides a and b, we get p"~! | n!, contradicting (). Next, using (Q) and
the Lifting the Exponent Lemma we get

V(1) +1,(2)++ - +1v,(n) = v,(n!) = v,(n!=c" 1) =1, (a”’l + b”’l) = vp(a+b)+v,(n—1). ()

In view of (), no number of 1,2,...,n can be divisible by p, except a + b and n —1 > a + b.
On the other hand, p|c implies that p < n/2 and so there must be at least two such numbers.
Hence, there are two multiples of p among 1,2,... n, namely a + b = p and n — 1 = 2p. But
this is another contradiction because n — 1 is odd. This final contradiction shows that there is
no solution of the equation for n > 100.

Comment 1. The original version of the problem asked to find all solutions to the equation. The
solution to that version is not much different but is more technical.
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Comment 2. To find all solutions we can replace the bound a,b,¢ < (n — 1)/2 for all n with a
weaker bound a,b,¢ < n/2 only for even n, which is a trivial application of AM-GM to the tuple
(2,3,...,n). Then we may use the same argument for odd n (it works for n > 5 and does not require
any bound on a,b,¢), and for even n the same solution works for n > 6 unless we have a + b=n — 1
and 2v,(n — 1) = vp(n!). This is only possible for p = 3 and n = 10 in which case we can consider the
original equation modulo 7 to deduce that 7 | abc which contradicts the fact that 79 > 10!. Looking at
n < 4 we find four solutions, namely,

(a,b,c;n) = (1,1,2,3),(1,2,1,3),(2,1,1,3), (2,2,2,4).

Comment 3. For sufficiently large n, the inequality a,b,c < (n — 1)/2 also follows from Stirling’s
formula.
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Determine all integers n > 2 with the following property: every n pairwise distinct

integers whose sum is not divisible by n can be arranged in some order a4, ao, ..., a, so that
ndividesl-a1+2-as+---+n-a,.

Answer: All odd integers and all powers of 2.

Solution. If n = 2¥a, where a > 3 is odd and k is a positive integer, we can consider a set
containing the number 2 4+ 1 and n — 1 numbers congruent to 1 modulo n. The sum of these
numbers is congruent to 2¥ modulo n and therefore is not divisible by n; for any permutation
(ay,as, ..., a,) of these numbers

lrag+2-ap+-+n-a,=1+---+n=2""a(2"a+1) £0 (mod 2%)

and a fortiori1-a; +2-ay +---+ n-a, is not divisible by n.
From now on, we suppose that n is either odd or a power of 2. Let S be the given set of
integers, and s be the sum of elements of S.

Lemma 1. If there is a permutation (a;) of S such that (n,s) divides >}, ia;, then there is a
permutation (b;) of S such that n divides ), ib;.

Proof. Let r = 3" ia;. Consider the permutation (b;) defined by b; = a;4,, where a;;, = a;.
For this permutation, we have

zn:ibi = Zn:miﬂ = zn:(z —z)a; =7 — sxr  (mod n).
i—1 i—1 i—1

Since (n, s) divides r, the congruence r — sx = 0 (mod n) admits a solution.

Lemma 2. Every set T' of km integers, m > 1, can be partitioned into m sets of k integers so
that in every set either the sum of elements is not divisible by k or all the elements leave the
same remainder upon division by k.

Proof. The base case, m = 2. If T' contains k elements leaving the same remainder upon division
by k, we form one subset A of these elements; the remaining elements form a subset B. If k
does not divide the sum of all elements of B, we are done. Otherwise it is enough to exchange
any element of A with any element of B not congruent to it modulo k£, thus making sums of
both A and B not divisible by k. This cannot be done only when all the elements of T" are
congruent modulo k; in this case any partition will do.

If no k elements of T" have the same residue modulo k, there are three elements a,b,c € T
leaving pairwise distinct remainders upon division by k. Let ¢ be the sum of elements of T". It
suffices to find A < T such that |A| = k and >, _,« # 0,¢ (mod k): then neither the sum of
elements of A nor the sum of elements of B = T\ A is divisible by k. Consider U’ = T'\ {a, b, ¢}
with |[U'| = k — 1. The sums of elements of three sets U’ u {a}, U" U {b}, U’ U {c} leave three
different remainders upon division by k, and at least one of them is not congruent either to 0
or to t.

Now let m > 2. If T' contains k elements leaving the same remainder upon division by k,
we form one subset A of these elements and apply the inductive hypothesis to the remaining
k(m — 1) elements. Otherwise, we choose any U < T, |U| = k — 1. Since all the remaining
elements cannot be congruent modulo k, there is a € T'\ U such that a # — >, = (mod k).
Now we can take A = U u {a} and apply the inductive hypothesis to 7"\ A.
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Now we are ready to prove the statement of the problem for all odd n and n = 2*. The
proof is by induction.

If n is prime, the statement follows immediately from Lemma 1, since in this case (n, s) = 1.
Turning to the general case, we can find prime p and an integer ¢ such that p’ | n and p' 1 s.
By Lemma 2, we can partition S into p sets of % = k elements so that in every set either the
sum of numbers is not divisible by & or all numbers have the same residue modulo &.

For sets in the first category, by the inductive hypothesis there is a permutation (a;) such
that k| YF | ia;.

If n (and therefore k) is odd, then for each permutation (b;) of a set in the second category
we have

k

Rk +1
i, bl% 0 (mod k).
i=1

By combining such permutation for all sets of the partition, we get a permutation (¢;) of S
such that & | 3" | ic;. Since this sum is divisible by k, and k is divisible by (n, s), we are done
by Lemma 1.

If n = 2%, we have p = 2 and k = 2°~!. Then for each of the subsets there is a permutation
(ay,...,ax) such that Zle ia; is divisible by 252 = £: if the subset belongs to the first category,
the expression is divisible even by k, and if it belongs to the second one,

k
k(k+1 k

Ziai = alw =0 (mod —) )

~ 2 2

Now the numbers of each permutation should be multiplied by all the odd or all the even
numbers not exceeding n in increasing order so that the resulting sums are divisible by k:

k k k
Z(Qi —1a; = ZQiai = QZiai =0 (mod k).
1 i—1 i—1

1=

Combining these two sums, we again get a permutation (¢;) of S such that &k | Y} | ic;, and
finish the case by applying Lemma 1.

Comment. We cannot dispense with the condition that n does not divide the sum of all elements.
Indeed, for each n > 1 and the set consisting of 1, —1, and n — 2 elements divisible by n the required
permutation does not exist.
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Let ai,as,as, ... be an infinite sequence of positive integers such that a, o, divides
Gy, + G, for all positive integers n and m. Prove that this sequence is eventually periodic, i.e.
there exist positive integers N and d such that a,, = a,,4 for all n > N.

Solution. We will make repeated use of the following simple observation:

Lemma 1. If a positive integer d divides a,, and a,,_,, for some m and n > 2m, it also divides
Qp—om- If d divides a,, and a,_s,,, it also divides a,,_,,.

Proof. Both parts are obvious since a,, divides a,_om, + Gn_m. Il

Claim. The sequence (a,) is bounded.

Proof. Suppose the contrary. Then there exist infinitely many indices n such that a,, is greater
than each of the previous terms ay, as, ..., a,_1. Let a,, = k be such a term, n > 10. For each
s < 5 the number a, = k divides a,,_s + a,_2, < 2k, therefore

Ap—s + Ap_2s = k.

In particular,
Ap =0p 1+ 0p2=0p 2+ Qg = Ap_4 + Ay_g,

that is, a,—1 = a,—4 and a,_s = a,_g. It follows from Lemma 1 that a,_; divides a,,_1_3, for
3s <n—1 and a,_o divides a,_s_g, for 6s < n — 2. Since at least one of the numbers a,_;
and a, o is at least a,/2, so is some a; with ¢ < 6. However, a, can be arbitrarily large, a
contradiction. ]

Since (a,) is bounded, there exist only finitely many ¢ for which a; appears in the sequence
finitely many times. In other words, there exists NV such that if a; = t and ¢ > N, then a; = ¢
for infinitely many j.

Clearly the sequence (a, 4 )n=o satisfies the divisibility condition, and it is enough to prove
that this sequence is eventually periodic. Thus truncating the sequence if necessary, we can
assume that each number appears infinitely many times in the sequence. Let k be the maximum
number appearing in the sequence.

Lemma 2. 1If a positive integer d divides a,, for some n, then the numbers i such that d divides
a; form an arithmetical progression with an odd difference.

Proof. Let iy < iy <13 < ... be all the indices i such that d divides a;. If is + 7,41 is even, it
follows from Lemma 1 that d also divides ai.+i.,,, impossible since iy < ===t < 4 ;. Thus

2
is and i,y are always of different parity, and therefore i, +i,.o is even. Applying Lemma 1
again, we see that d divides a,+i,,,, hence “”L% = lgi1, O
2

We are ready now to solve the problem.

The number of positive divisors of all terms of the progression is finite. Let ds be the
difference of the progression corresponding to s, that is, s divides a, if and only if it divides
an+q, for any positive integer t. Let D be the product of all ds. Then each s dividing a term
of the progression divides a,, if and only if it divides a,, p. This means that the sets of divisors
of a,, and a,p coincide, and a,,,p = a,. Thus D is a period of the sequence.

Comment. In the above solution we did not try to find the exact structure of the periodic part of
(an). A little addition to the argument above shows that the period of the sequence has one of the
following three forms:

(i) t (in this case the sequence is eventually constant);
(ii) ¢, 2t, 3t or 2t, t, 3t (so the period is 3);

(iii) ¢, t, ..., 2t (the period can be any odd number).
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In these three cases t can be any positive integer. It is easy to see that all three cases satisfy the
original condition.

We again denote by k& be the maximum number appearing in the sequence. All the indices 4 such
that a; = k form an arithmetical progression. If the difference of this progression is 1, the sequence
(ayn) is constant, and we get the case (i). Assume that the difference T is at least 3.

Take an index n such that a,, = k and let a = a,,_9, b = a,,_1. We have a,b < k and therefore
k=a, =0p1+ 0,92 =a+b Ifa=0b= %, then all the terms ay, ag, ..., a, are divisible by k/2,
that is, are equal to k or k/2. Since the indices ¢ such that a; = k form an arithmetical progression
with odd diference, we get the case (iii).

Suppose now that a # b.

Claim. For § < m < n we have a,, = aif m =n —2 (mod 3) and a,, =bif m=n —1 (mod 3).

Proof. The number k = a,, divides a,,_2 +a,_1 =a+ b and a, 4 + ap_o = ap_4 + a and is therefore
equal to these sums (since a,b < k and a; < k for all 7). Therefore a,—1 = a,—4 = b, that is, a,—4 < k,
ap—4 + ap—g = k and a,—g = ap—2 = a. One of the numbers a and b is greater than k/2.

Ifb=a,-1=an-4> g, it follows from Lemma 1 that a,,_1 divides a,_1_3s when 3s <n — 1, and
therefore a,,_1_3s = b when 3s < n—1. When 6s < n—4, k also divides a,,_4_gs+0n_9_3s = b+an_o_3s,
thus, a, 2 3s =k —b=a.

Ifa=a,_o=a,_g> %, all the terms a,_2_gs with 6s < n — 2 are divisible by a, that is, the
indices ¢ for which a divides a; form a progression with difference dividing 6. Since this difference is
odd and greater than 1, it must be 3, that is, a,_2_3; = a when 3s < n — 2. Similarly to the previous

case, we have a, 135 = an — ap_2 65 = k —a = b when 6s <n — 2. O
Let a, and a,+7r be two consecutive terms of the sequence equal to k. If n is large enough,
# < n — 2, and applying the claim to n + T instead of n we see that the three consecutive terms

Gn—92 = a, Gp—1 = b, ap = k must be equal to ay17_3, ant7—1 and a, 7 respectively. Thus, for some
1 we have a;13, = a and a;4143s = b for all s. Truncating the sequence again if necessary, we may
assume that agsy1 = a and aggro = b for all s. We know also that a, = k if and only if n is divisible
by T (incidentally, this proves that 7" is divisible by 3).

If ags = ¢ for some integer s, each of the numbers a, b, ¢ divides the sum of the other two. It is
easy to see that these numbers are proportional to one of the triplets (1, 1, 1), (1, 1, 2) and (1, 2, 3) in
some order. It follows that the greater of the two numbers a and b is the smaller multiplied by 2, 3 or
3/2. The last two cases are impossible because then ¢ cannot be the maximum element in the triplet
(a,b,c), while ¢ = k = a + b for infinitely many s. Thus the only possible case is 2, the numbers a
and b are k/3 and 2k/3 in some order, and the only possible values of ¢ are k and k/3. Suppose that
ass = k/3 for some s > 1. We can choose s so that ags+3 = k. Therefore T', which we already know to
be odd and divisible by 3, is greater than 3, that is, at least 9. Then ass—3 # k, and the only other
possibility is ags—3 = k/3. However, assy+s = k must divide ass + ags—3 = 2k/3, which is impossible.
We have proved then that ass = k for all s > 1, which is the case (ii).
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For a polynomial P(x) with integer coefficients let Pl(z) = P(x) and P**'(z) =
P(P*(z)) for k > 1. Find all positive integers n for which there exists a polynomial P(x) with
integer coefficients such that for every integer m > 1, the numbers P™(1),..., P™(n) leave
exactly [n/2™] distinct remainders when divided by n.

Answer: All powers of 2 and all primes.

Solution. Denote the set of residues modulo ¢ by Z,. Observe that P can be regarded as a
function Z, — Z, for any positive integer ¢. Denote the cardinality of the set P™(Z;) by fo..-
Note that f,,,, = [n/2™] for all m > 1 if and only if f,,11., = [fmn/2] for all m = 0.

Part 1. The required polynomial exists when n is a power of 2 or a prime.

If n is a power of 2, set P(r) = 2.
If n = p is an odd prime, every function f: Z, — Z, coincides with some polynomial with
integer coefficients. So we can pick the function that sends z € {0,1,...,p — 1} to |z/2].

Part 2. The required polynomial does not exist when n is not a prime power.

Let n = ab where a,b > 1 and ged(a,b) = 1. Note that, since ged(a, b) = 1,

fm,ab = fm,afm,b

by the Chinese remainder theorem. Also, note that, if f,,, = f11,, then P permutes the
image of P™ on Zy, and therefore f;, = f,, ¢ for all s > m. So, as f,, o = 1 for sufficiently large
m, we have for each m

fm,a > fm+1,a or fm,a = 17 fm,b > fm+1,b or fm,b =1

Choose the smallest m such that f,,11, =1 or f,4+1, = 1. Without loss of generality assume
that f110 = 1. Then fri1.00 = finr1p < frb < fmab/2 < fms1.a0, @ contradiction.

Part 3. The required polynomial does not exist when n is an odd prime power that is not a
prime.

Let n = p*, where p > 3 is prime and k > 2. For r € Z, let S, denote the subset of Z,
consisting of numbers congruent to » modulo p. We denote the cardinality of a set S by |S].

Claim. For any residue r modulo p, either |P(S,)| = p* ! or |P(S,)| < p*2.

Proof. Recall that P(r + h) = P(r) + hP'(r) + h*Q(r, h), where @ is an integer polynomial.

If p | P'(r), then P(r + ps) = P(r) (mod p?), hence all elements of P(S,) are congruent
modulo p?. So in this case |P(S,)| < p*~2.

Now we show that p { P'(r) implies |P(S,)| = pF~! for all k.

Suppose the contrary: |P(S,)| < pF~! for some k > 1. Let us choose the smallest k
for which this is so. To each residue in P(S,) we assign its residue modulo p*~!; denote
the resulting set by P(S,r). We have |P(S,r)| = p*~2 by virtue of minimality of k. Then
|P(S,)] < p*=' = p-|P(S,r)], that is, there is u = P(x) € P(S,) (x =r (mod p)) and t # 0
(mod p) such that u + pF=1t ¢ P(S,).

Note that P(z + p*1s) = u + p* 1sP'(x) (mod p*). Since P(x + p*ls) # u + p* 1t
(mod p*), the congruence p* 1sP'(x) = p* 't (mod p*) has no solutions. So the congruence
sP'(z) =t (mod p) has no solutions, which contradicts p t P'(r). M
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Since the image of P™ consists of one element for sufficiently large m, we can take the
smallest m such that |P™ 1(S,)| = p*~! for some r € Z,, but |[P™(S,)| < p*~2 for all ¢ € Z,,.

From now on, we fix m and r.

Since the image of P (Z,.)\P™ (S,) under P contains P™(Z,x)\P™(S,), we have

a = |P™(Zy)\P™(S)| < [P™H(Zpe)\P™ ()],

thus

k—2

a +pk71 < fmfl,pk < Qfm,p’c <2p + 2a,

SO
(p—2)p" % <a.

Since f;, = 1 for sufficiently large i, there is exactly one t € Z,, such that P(t) =t (mod p).
Moreover, as 4 increases, the cardinality of the set {s € Z, | P'(s) = t (mod p)} increases
(strictly), until it reaches the value p. So either

{seZ,| P" ' (s)=t (modp)}=p or |{s€Z,|P™" ' (s)=t (modp)}| =m.

Therefore, either f,,_;, = 1 or there exists a subset X < Z, of cardinality at least m such
that P™1(z) =t (mod p) for all x € X.

In the first case |P™ Y(Z,.)| < p* 1 = |P™(S,)|, so a = 0, a contradiction.

In the second case let Y be the set of all elements of Z,x congruent to some element of X
modulo p. Let Z = Z,\Y. Then P '(Y) < S, P(S)) & Si, and Z = (J;ez\ x Sis 80

[PY) < |P(S)I<p"? and  [P™(2)| < |Z,\X] - p"2 < (p —m)p*

Hence,
(p=2)p" 2 <a < [P"(Zy)| < |P"(Y)| + [P™(Z)] < (p—m + 1)p*?

and m < 3. Then |P%(S,)| < p* 2 for all ¢ € Z,, so
PAS|PA(Zy) <P,

which is impossible for p > 5. Tt remains to consider the case p = 3.

As before, let t be the only residue modulo 3 such that P(t) =t (mod 3).

If 3t P'(t), then P(S;) = S; by the proof of the Claim above, which is impossible.

So 3 | P'(t). By substituting h = 3's into the formula P(t + h) = P(t) + hP'(t) + h*Q(t, h),
we obtain P(t+3's) = P(t) (mod 3"™'). Using induction on i we see that all elements of P*(S;)
are congruent modulo 31, Thus, |P*71(S;)| = 1.

Note that f;3 <2 and fo3 < 1, so P?(Zg) < S;. Therefore, |P*+1(Zgr)| < |P*1(Sy)| = 1.
It follows that 3% < 2**! which is impossible for k > 2.

Comment. Here is an alternative version of the problem.

A function f: Z — Z is chosen so that a — b | f(a) — f(b) for all a,b € Z with a # b. Let Sy = Z,
and for each positive integer m, let S), denote the image of f on the set S,, 1. It is given that, for
each nonnegative integer m, there are exactly [n/2™] distinct residues modulo n in the set S,,. Find
all possible values of n.

Answer: All powers of primes.

Solution. Observe that f can be regarded as a function Z;, — Z, for any positive integer £. We use
notations f™ and f,,  as in the above solution.
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Part 1. There exists a function f: Zyx — L, satisfying the desired properties.

For x € Z,x, let rev(z) denote the reversal of the base-p digits of = (we write every z € Z,» with
exactly k digits, adding zeroes at the beginning if necessary). Choose

o-m((=22)

where, for dividing by 2, rev(z) is interpreted as an integer in the range [0,p"). It is easy to see that

fma1k = [ /2]
We claim that if a,b € Z,« so that p™|a — b, then p™|f(a) — f(b). Let x = rev(a), y = rev(b). The

first m digits of 2 and y are the same, i.e |2/p™ %] = |y/p™*|. For every positive integers ¢, d and z

we have ||2/cl/d] = [2/(ed)] = ||2/dl/c], o
[ z/21/6m % | = [l *1/2| = [lw/p™*172] = | w21

Thus, the first m digits of |z/2| and |y/2] are the same. So the last m digits of f(a) and f(b) are the
same, i.e. p™|f(a) — f(b).

Part 2. Lifting the function f: Zyx — Z,x to a function on all of Z.

We show that, for any function f: Z,» — Z, for which ged(p¥,a — b) | f(a) — f(b), there is
a corresponding function ¢g: Z — 7Z for which a — b | g(a) — g(b) for all distinct integers a, b and
g(x) = f(x) (mod p*) for all 2 € Z, whence the proof will be completed. We will construct the values
of such a function inductively; assume that we have constructed it for some interval [a,b) and wish to
define g(b). (We will define g(a — 1) similarly.)

For every prime ¢ < |a — b|, we choose the maximal «a, for which there exists ¢, € [a, ), such that
b —cq4: ¢“1, and choose one such c,.

We apply Chinese remainder theorem to find g(b) satisfying the following conditions:

g(b) = g(cg) (mod ¢*?) for g¢+#p, and
g(b) =g(cp) (mod ¢*?) if «, >k, g(b) = f(b) (mod p*) if a, <k

It is not hard to verify that b — ¢ | g(b) — g(c) for every c € [a,b) and g(b) = f(b) (mod p¥).

Part 8. The required function does not exist if n has at least two different prime divisors.

The proof is identical to the polynomial version.



