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Problems

Algebra

Version 1. Let n be a positive integer, and set N = 2". Determine the smallest real

number a,, such that, for all real x,

N 2N 4+ 1

5 S an(z —1)% + .

Version 2. For every positive integer IV, determine the smallest real number by such that,
for all real x,
NN+ 1
2

<by(z—1)2 + 2.
(Ireland)

Let A denote the set of all polynomials in three variables x,y, z with integer
coefficients. Let B denote the subset of A formed by all polynomials which can be expressed as

(r+y+2)P(r,y,2) + (zy + yz + 20)Q(x,y, 2) + vyzR(z,y, 2)

with P,Q, R € A. Find the smallest non-negative integer n such that z'y72z* € B for all non-
negative integers 1, j, k satisfying i + 7 + k = n.
(Venezuela)

Suppose that a, b, ¢, d are positive real numbers satisfying (a + ¢)(b+ d) = ac + bd.
Find the smallest possible value of

—+ -+ +

e b e, d
b ¢ d a

(Israel)

Let a, b, ¢, d be four real numbers such that a >b>c>d>0anda+b+c+d = 1.
Prove that
(a+2b+3c+4d)a" b’ c“d < 1.

(Belgium,)

A magician intends to perform the following trick. She announces a positive integer
n, along with 2n real numbers x; < ... < x,, to the audience. A member of the audience then
secretly chooses a polynomial P(x) of degree n with real coefficients, computes the 2n values
P(x1),..., P(xs,), and writes down these 2n values on the blackboard in non-decreasing order.
After that the magician announces the secret polynomial to the audience.
Can the magician find a strategy to perform such a trick?
(Luzembourg)

Determine all functions f: Z — Z such that
FE (@ +b) = af(a) + bf(b)  for every a,b e Z.

Here, f™ denotes the n' iteration of f, i.e., fO(z) = z and f"*(z) = f(f"(z)) for all n > 0.
(Slovakia)
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Let n and k be positive integers. Prove that for ay,...,a, € [1,2*] one has

(Iran)

- Let R* be the set of positive real numbers. Determine all functions f: Rt — R
such that, for all positive real numbers z and y,

flz+ fzy)) +y = f(a)f(y) + 1.
(Ukraine)



6 Saint-Petersburg — Russia, 18th—28th September 2020

Combinatorics

Let n be a positive integer. Find the number of permutations aq,as, ..., a, of the
sequence 1,2, ..., n satisfying

(United Kingdom)

In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are
colored white. Prove that there exist 24 convex quadrilaterals )1, ..., (24 whose corners are
vertices of the 100-gon, so that

e the quadrilaterals @)y, ..., QJo4 are pairwise disjoint, and

e cvery quadrilateral (); has three corners of one color and one corner of the other color.
(Austria)

Let n be an integer with n > 2. On a slope of a mountain, n? checkpoints are
marked, numbered from 1 to n? from the bottom to the top. Each of two cable car companies,
A and B, operates k cable cars numbered from 1 to k; each cable car provides a transfer from
some checkpoint to a higher one. For each company, and for any ¢« and j with 1 <7 < j <k,
the starting point of car j is higher than the starting point of car ¢; similarly, the finishing point
of car j is higher than the finishing point of car ¢. Say that two checkpoints are linked by some
company if one can start from the lower checkpoint and reach the higher one by using one or
more cars of that company (no movement on foot is allowed).

Determine the smallest k for which one can guarantee that there are two checkpoints that
are linked by each of the two companies.

(India)

The Fibonacci numbers Fy, Fi, Fs, ... are defined inductively by Fy = 0, F; = 1, and
F,.1=F,+ F, 1 forn>1. Given an integer n > 2, determine the smallest size of a set S of

integers such that for every k = 2,3,... n there exist some x,y € S such that r —y = Fj.
(Croatia)

Let p be an odd prime, and put N = 1(p* — p) — 1. The numbers 1,2,..., N are
painted arbitrarily in two colors, red and blue. For any positive integer n < N, denote by r(n)
the fraction of integers in {1,2,... ,n} that are red.
Prove that there exists a positive integer a € {1,2,...,p — 1} such that r(n) # a/p for all
n=12,...,N.
(Netherlands)

4n coins of weights 1,2, 3,...,4n are given. Each coin is colored in one of n colors

and there are four coins of each color. Show that all these coins can be partitioned into two

sets with the same total weight, such that each set contains two coins of each color.
(Hungary)



Shortlisted problems 7

- Consider any rectangular table having finitely many rows and columns, with a real
number a(r, ¢) in the cell in row r and column ¢. A pair (R, ('), where R is a set of rows and
C a set of columns, is called a saddle pair if the following two conditions are satisfied:

(i)  For each row 1/, there is r € R such that a(r,¢) = a(r’, ¢) for all ce C;

(27)  For each column ¢, there is ¢ € C' such that a(r,c) < a(r, ) for all r € R.

A saddle pair (R, C) is called a minimal pair if for each saddle pair (R',C") with R’ < R
and C' < C, we have R = R and C' = C.

Prove that any two minimal pairs contain the same number of rows.

(Thailand)

- Players A and B play a game on a blackboard that initially contains 2020 copies
of the number 1. In every round, player A erases two numbers x and y from the blackboard,
and then player B writes one of the numbers = + y and |x — y| on the blackboard. The game
terminates as soon as, at the end of some round, one of the following holds:

(1) one of the numbers on the blackboard is larger than the sum of all other numbers;
(2) there are only zeros on the blackboard.

Player B must then give as many cookies to player A as there are numbers on the blackboard.
Player A wants to get as many cookies as possible, whereas player B wants to give as few as

possible. Determine the number of cookies that A receives if both players play optimally.
(Austria)
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Geometry

Let ABC' be an isosceles triangle with BC = C'A, and let D be a point inside side
AB such that AD < DB. Let P and @ be two points inside sides BC' and C'A, respectively,
such that ZDPB = ZDQA = 90°. Let the perpendicular bisector of P meet line segment
CQ at E, and let the circumcircles of triangles ABC' and C'P(@) meet again at point F', different
from C.
Suppose that P, E, F' are collinear. Prove that ZAC'B = 90°.
(Luzembourg)

Let ABC'D be a convex quadrilateral. Suppose that P is a point in the interior of
ABCD such that

/PAD:/PBA: /DPA=1:2:3=/CBP: /BAP: /BPC.

The internal bisectors of angles ADP and PC'B meet at a point @) inside the triangle ABP.
Prove that AQ = BQ.
(Poland)

. et e a convex quadrilateral wit > , > , an

Let ABCD b dril 1 with ZABC > 90°, ZCDA > 90° d
LDAB = ZBCD. Denote by E and F' the reflections of A in lines BC' and C'D, respectively.
Suppose that the segments AE and AF meet the line BD at K and L, respectively. Prove that

the circumcircles of triangles BEK and DF'L are tangent to each other.
(Slovakia)

In the plane, there are n > 6 pairwise disjoint disks Dy, Ds, ..., D, with radii
Ry >Ry >...>2 R,. Forevery i =1,2,...,n, a point P; is chosen in disk D;. Let O be an
arbitrary point in the plane. Prove that

OP,+0OP,+...+0P,>Rs+ R:+ ...+ R,.

(A disk is assumed to contain its boundary.)

(Iran)

Let ABCD be a cyclic quadrilateral with no two sides parallel. Let K, L, M, and N
be points lying on sides AB, BC', C'D, and DA, respectively, such that K LM N is a rhombus
with KL || AC and LM || BD. Let wy, we, w3, and wy be the incircles of triangles ANK,
BKL, CLM, and DM N, respectively. Prove that the internal common tangents to w; and ws
and the internal common tangents to w, and wy are concurrent.

(Poland)

Let I and I4 be the incenter and the A-excenter of an acute-angled triangle ABC
with AB < AC. Let the incircle meet BC at D. The line AD meets B4, and CI4 at E
and F', respectively. Prove that the circumcircles of triangles AID and I4EF are tangent to
each other.

(Slovakia)
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G7. Let P be a point on the circumcircle of an acute-angled triangle ABC. Let D,
E, and F be the reflections of P in the midlines of triangle ABC parallel to BC', C'A, and AB,
respectively. Denote by w4, wg, and we the circumcircles of triangles ADP, BEP, and CFP,
respectively. Denote by w the circumcircle of the triangle formed by the perpendicular bisectors
of segments AD, BE and C'F.

Show that wy, wp, we, and w have a common point.
(Denmark)

G8. Let I and I be the circumcircle and the incenter of an acute-angled triangle ABC.
Two circles wp and we passing through B and C| respectively, are tangent at I. Let wp meet
the shorter arc AB of I' and segment AB again at P and M, respectively. Similarly, let we
meet the shorter arc AC of I and segment AC' again at ) and N, respectively. The rays PM
and QN meet at X, and the tangents to wp and we at B and C, respectively, meet at Y.

Prove that the points A, X, and Y are collinear.
(Netherlands)

- Prove that there exists a positive constant ¢ such that the following statement is
true:

Assume that n is an integer with n > 2, and let S be a set of n points in the plane such
that the distance between any two distinct points in S is at least 1. Then there is a line ¢
separating S such that the distance from any point of S to £ is at least cn='/3.

(A line ¢ separates a point set S if some segment joining two points in S crosses /.)
(Taiwan)
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Number Theory

Given a positive integer k, show that there exists a prime p such that one can choose
distinct integers a, as, ..., axr3 € {1,2,...,p — 1} such that p divides a;a;41a;12a;13 — i for all
1=1,2,...,k.

(South Africa)

For each prime p, there is a kingdom of p-Landia consisting of p islands numbered
1, 2, ..., p. Two distinct islands numbered n and m are connected by a bridge if and only if
p divides (n? —m + 1)(m? —n + 1). The bridges may pass over each other, but cannot cross.
Prove that for infinitely many p there are two islands in p-Landia not connected by a chain of
bridges.

(Denmark)

IN3. Let n be an integer with n > 2. Does there exist a sequence (ay,...,a,) of positive
integers with not all terms being equal such that the arithmetic mean of every two terms is

equal to the geometric mean of some (one or more) terms in this sequence?
(Estonia)

For any odd prime p and any integer n, let dy(n) € {0,1,...,p — 1} denote the
remainder when n is divided by p. We say that (ag, a1, as, .. .) is a p-sequence, if ag is a positive
integer coprime to p, and a1 = a, + dp(a,) for n = 0.

(a) Do there exist infinitely many primes p for which there exist p-sequences (ag, a1, as, . . .) and
bo, b1, ba, . ..) such that a, > b, for infinitely many n, and b, > a, for infinitely many n?

(
(b) Do there exist infinitely many primes p for which there exist p-sequences (ag, a1, as, . . .) and
(bo, by, ba, . ..) such that ay < by, but a,, > b, for all n > 17

(United Kingdom)

Determine all functions f defined on the set of all positive integers and taking
non-negative integer values, satisfying the three conditions:

(1) f(n) # 0 for at least one n;
(17) f(xy) = f(x) + f(y) for every positive integers x and y;

(i73) there are infinitely many positive integers n such that f(k) = f(n — k) for all £ < n.
(Croatia)

For a positive integer n, let d(n) be the number of positive divisors of n, and let
©(n) be the number of positive integers not exceeding n which are coprime to n. Does there
exist a constant C' such that

forall n > 17
(Cyprus)

- Let S be a set consisting of n > 3 positive integers, none of which is a sum of two
other distinct members of S. Prove that the elements of S may be ordered as aq, as, ..., a, so
that a; does not divide a;_1 + a;41 forall t =2,3,...,n— 1.

(Ukraine)
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Solutions

Algebra

Version 1. Let n be a positive integer, and set N = 2". Determine the smallest real
number a,, such that, for all real z,

NN +1

5 <ap(zr—1)2+2z.

Version 2. For every positive integer N, determine the smallest real number by such that,
for all real x,
NN +1

5 S by(z —1)% + 2.

(Ireland)
Answer for both versions : a, = by = N/2.

Solution 1 (for Version 1). First of all, assume that a,, < N/2 satisfies the condition. Take
r =1+t for t > 0, we should have

-gii§1i2<(1+t+aJﬂN
Expanding the brackets we get
(1 +—t+—ant2yv-—-ggjlfgfijll:= <fVan —-Z%i) 2 +est® + .+ et (1)
with some coefficients cs, ..., con. Since a,, < N/2, the right hand side of (1) is negative for

sufficiently small . A contradiction.

It remains to prove the following inequality

N
<:p+§(:p—1) , Z(N,x)

where N = 2".

Use induction in n. The base case n = 0 is trivial: N = 1 and both sides of Z(N, x) are
equal to (1 + 2?)/2. For completing the induction we prove Z(2N, z) assuming that Z(N,y) is
established for all real y. We have

(T +1)— (z— 1)
2

(z+ N —-1?)° =2>+ N (z — 1)* + N(z — 1)

N N N
=x2+5(1’2—1)2+<N2—§) (x—1)4>x2—|—§(:c2—1)2>

where the last inequality is Z(N, z?). Since

—1)? 241
x+N(x—1)2>x+(x2) :3:2 >0,

taking square root we get Z(2N, z). The inductive step is complete.
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Solution 2.1 (for Version 2). Like in Solution 1 of Version 1, we conclude that by > N/2.
It remains to prove the inequality Z(N, z) for an arbitrary positive integer V.

First of all, Z(N, 0) is obvious. Further, if z > 0, then the left hand sides of Z(N, —z) and
Z(N,z) coincide, while the right hand side of Z(N, —z) is larger than that of Z(N, —z) (their
difference equals 2(N — 1)z > 0). Therefore, Z(N, —z) follows from Z(N, z). So, hereafter we
suppose that x > 0.

Divide Z(N, z) by z and let t = (z — 1)*/x = x — 2 + 1/z; then Z(n, z) reads as

szzwé(lJrgt)N. (2)
The key identity is the expansion of fy as a polynomial in %:
Lemma. v
=Ny e (N;,; k) i ()
Proof. Apply induction on N. We will make use of the straightforward recurrence relation
i+ fva=(@+1/z)fn=2+1)fn. (4)

The base cases N = 1,2 are straightforward:

t 1
=1+ = >+ 2t + 1.
hi=l+g, =gt +2+
For the induction step from N — 1 and N to N + 1, we compute the coefficient of t* in fxy 1
using the formula fy.; = (2 +t)fn — fy_1. For k = 0 that coefficient equals 1, for k& > 0 it
equals

5 N (N+k N N N+k—-1y N-1 N+k—-1
N +E\ 2k N+k—1\ 2k—-2 N+k—-1 2k

(N +Ek-—1) 2k(2k — 1)N (N —=1)(N —k)
— T (9N —
(2k)I(N — k)! (N+k—1)(N—-k+1) N+k—-1
(N +k—1)! ) ()
= 2N(N — 1 N —N“—N)=—=""S_(N+1
G — g oy GOV =k + 1)+ 3kN + & Ay IR
that completes the induction. O

Turning back to the problem, in order to prove (2) we write

NV NV N1 /N+k N
1+—t)] —fv=[(1+=t)] —N th = t*
<+2> In (+2) ,;]Nw(%) ,;]O"“’

where
o (3 () el
_ <];])k <];[) <1 B 2k(l + 1/N)(1éi/]l\f)).-.......-(glkg (k — 1)/N)2 |
(2 Q)0 atn) - () () (- f12) -

and (2) follows.
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Solution 2.2 (for Version 2). Here we present another proof of the inequality (2) for > 0,

or, equivalently, for t = (z — 1)?/x = 0. Instead of finding the coefficients of the polynomial

fv = fn(t) we may find its roots, which is in a sense more straightforward. Note that the

recurrence (4) and the initial conditions fy = 1, fi = 1+ ¢/2 imply that fy is a polynomial in ¢

of degree N. It also follows by induction that fx(0) = 1, f/(0) = N?/2: the recurrence relations

vead as f+1(0) + fiv1(0) = 2/x(0) and fy1,(0) + fy_1(0) = 2£%(0) + f(0), respectively.
Next, if z), = exp(m) for ke {1,2,..., N}, then

N
1 2%k — 1 2% — 1
_thQ_xk_l*_k :2—2(}05% :4Sin2% ~ 0
and
ir(2k—1) im(2k—1)
oy 4+ N &XP <T> + exp <—f>
fa(ty) = =& ko — _0.

2 2
So the roots of fy are tq,...,ty and by the AM—GM inequality we have

fN(t)z(l—%) (1&)(1£2<<1;<%++;>>N
g

Comment. The polynomial fx(t) equals to %T w(t+2), where T, is the n*® Chebyshev polynomial of
the first kind: T,,(2cos s) = 2cosns, T, (x + 1/x) = 2™ + 1/z™.

Solution 2.3 (for Version 2). Here we solve the problem when N > 1 is an arbitrary real
number. For a real number a let

fz) =

<:1:2N +1

5 >%—a(:p—1)2—x.

+-1
f/($’) _ (x2N2+ 1) $2N—1 . 2(1,(l‘ . 1) 1 and f/(].) _ O,

aN | 1\ N2 aN | 1\ v !
f"(z) = (1-N) <x 2+ ) N2 (2N -1) (:v 2+ ) 2 -2q and f’(1) = N—2a.

So if a < %, the function f has a strict local minimum at point 1, and the inequality f(z) <
0 = f(1) does not hold. This proves by > N/2.
For a = & we have f”(1) = 0 and

>0 if0<z<1and

(x) = %(1 — N)(1—28) (25 s ey {

<0 ifz>1.

Hence, f"(x) <0 for z # 1; f'(x) > 0 for x < 1 and f'(x) < 0 for # > 1, finally f(x) < 0 for
x # 1.

Comment. Version 2 is much more difficult, of rather A5 or A6 difficulty. The induction in Version
1 is rather straightforward, while all three above solutions of Version 2 require some creativity.
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A2. Let A denote the set of all polynomials in three variables x,y, z with integer
coefficients. Let B denote the subset of A formed by all polynomials which can be expressed as

(r+y+2)P(r,y,2) + (zy + yz + 20)Q(x,y, 2) + vyzR(z,y, 2)

with P,Q, R € A. Find the smallest non-negative integer n such that z’y’z* € B for all non-
negative integers i, j, k satisfying i + j +k > n
(Venezuela)

Answer: n = 4.

Solution. We start by showing that n < 4, i.e., any monomial f = 2'y/2* with i+ j +k >4
belongs to B. Assume that ¢ > j > k, the other cases are analogous.
Let x +y+ 2 =p, vy + yz + zz = q and zyz = r. Then

0=(z—2)z—y)r—2) =a* —pa® +qr —r.

therefore 3 € B. Next, %y = zyq — (v + y)r € B.
If k> 1, then r divides f, thus f € B. If k = 0 and j > 2, then 2?y? divides f, thus we
have f € B again. Finally, if k = 0, j < 1, then 2? divides f and f € B in this case also.

In order to prove that n > 4, we show that the monomial 2%y does not belong to B. Assume
the contrary:
2’y = pP +qQ + 1R (1)

for some polynomials P, @, R. If polynomial P contains the monomial 2% (with nonzero coeffi-
cient), then pP + ¢qQ + rR contains the monomial 23 with the same nonzero coefficient. So P
does not contain z2, 32, 2% and we may write

2’y = (z +y + 2)(azy + byz + czx) + (zy + yz + z2)(dx + ey + f2) + gryz,

where a,b,c; d,e, f; g are the coefficients of xy,yz, zx; x,y,2; xryz in the polynomials P;
Q; R, respectively (the remaining coefficients do not affect the monomials of degree 3 in
pP +qQ +rR). By considering the coefficients of zy? we get ¢ = —a, analogously e = —b,
f=-b f=—-cd=—c thusa=b=cand f =e =d= —a, but then the coefficient of 2%y
in the right hand side equals a + d = 0 # 1.

Comment 1. The general question is the following. Call a polynomial f(x1,...,z,) with integer
coefficients nice, if f(0,0,...,0) = 0 and f(z,...,2x,) = f(z1,...,2,) for any permutation 7 of
1,...,n (in other words, f is symmetric and its constant term is zero.) Denote by Z the set of
polynomials of the form

P1q1 + P292 + ... + PmQm, (2)

where m is an integer, ¢1,..., ¢, are polynomials with integer coefficients, and p1,...,p, are nice
polynomials. Find the least N for which any monomial of degree at least IV belongs to Z.

The answer is n(n — 1)/2 4+ 1. The lower bound follows from the following claim: the polynomial

n—1

F(xy,...,2,) = zoxiay ... -2l

does not belong to 7.

Assume that F' = > p;q;, according to (2). By taking only the monomials of degree n(n —1)/2, we
can additionally assume that every p; and every ¢; is homogeneous, degp; > 0, and degp; + degq; =
deg F' = n(n — 1)/2 for all i.

Consider the alternating sum

m

Zsign(w)F(azm, . ZpZZﬂgn )i (Trys- s Try) =S, (3)

™ =1 T
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where the summation is done over all permutations 7 of 1,...n, and sign(m) denotes the sign of the
permutation 7. Since degg; = n(n —1)/2 — degp; < n(n — 1)/2, in any monomial @ of ¢;, there are at
least two variables, say =, and xg, with equal exponents. Therefore | sign(m)Q(zx,,...,%x,) = 0,
because each pair of terms that corresponds to permutations which differ by the transposition of «
and 3, cancels out. This holds for any ¢ = 1,...,m and any monomial of ¢;, so S = 0. But the left
hand side of (3) is a non-zero polynomial. This is a contradiction.

Let us now prove, using induction on n, that any monomial h = z{* ... x5 of degree n(n—1)/2+1
belongs to Z, and additionally all p;, g; in the representation (2) can be chosen homogeneous with sum
of degrees equal to n(n — 1)/2 + 1. (Obviously, any monomial of degree at least n(n —1)/2 + 1 is
divisible by a monomial of degree exactly n(n — 1)/2 + 1, thus this suffices.) The proposition is true
for n = 1, so assume that n > 1 and that the proposition is proved for smaller values of n.

We proceed by an internal induction on S := [{i: ¢; = 0}|. In the base case S = 0 the monomial
h is divisible by the nice polynomial z1 - ... - x,, therefore h € Z. Now assume that S > 0 and that
the claim holds for smaller values of S. Let T' = n — S. We may assume that ¢cpy1 = ... = ¢, =0
and h =1 ... -xrg(z1,...,2n_1), where degg=n(n—1)/2—-T+1>= (n—1)(n —2)/2 + 1. Using
the outer induction hypothesis we represent g as p1q1 + ... + pmQm, where p;(x1,...,z,_1) are nice
polynomials in n — 1 variables. There exist nice homogeneous polynomials P;(z1,...,x,) such that
Pi(z1,...,2y-1,0) = pi(x1,...,2p—1). In other words, A; := p;(z1,...,2n-1) — Pi(x1,...,Tp_1,2y) is

divisible by x,, let A; = x,9;. We get

h=wx-... ‘CUTZPZ‘% =T1-... '$TZ(Pz‘ + Tngi)qi = (T1- ... 'ﬂJTSEn)ZQz‘qi +ZPiQi el
The first term belongs to Z by the inner induction hypothesis. This completes both inductions.

Comment 2. The solutions above work smoothly for the versions of the original problem and its
extensions to the case of n variables, where all polynomials are assumed to have real coefficients. In
the version with integer coefficients, the argument showing that z?y ¢ B can be simplified: it is not
hard to show that in every polynomial f € B, the sum of the coefficients of 2y, 222, y2x, yz, 2°
2%y is even. A similar fact holds for any number of variables and also implies that N > n(n—1)/2 + 1
in terms of the previous comment.

z and
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Suppose that a, b, ¢, d are positive real numbers satisfying (a + ¢)(b+ d) = ac + bd.
Find the smallest possible value of

(Israel)
Answer: The smallest possible value is 8.

Solution 1. To show that S > 8, apply the AM—GM inequality twice as follows:

<g+£) < ) /ac [bd ~ 2(ac + bd) 2(a+c)(b+d)>2 2@-2@_8
b d ac Vabed v abed - vabed .

The above inequalities turn into equalities when ¢ = ¢ and b = d. Then the condition
(a4 ¢)(b+ d) = ac + bd can be rewritten as 4ab = a® +b?. So it is satisfied when a/b = 2 + /3.
Hence, S attains value 8, e.g., whena=c=1and b=d = 2 + /3.

Solution 2. By homogeneity we may suppose that abcd = 1. Let ab = C, bc = A and
ca = B. Then a, b, ¢ can be reconstructed from A, B and C' as a = /BC/A, b = \/AC/B

and ¢ = n/AB/C. Moreover, the condition (a + ¢)(b+ d) = ac + bd can be written in terms of
A, B,C as

1

We then need to minimize the expression

1 1
A+ —+CH+==bc+ad+ab+cd=(a+c)(b+d)=ac+bd =B+ —.
S::ad—kbc ab + cd <A+1>B+(

bd . )%
(1 2) (-3) (1o 2)s
= (A+%> <B_§>+(B+B) é

Without loss of generality assume that B > 1 (otherwise, we may replace B by 1/B and swap
A and (| this changes neither the relation nor the function to be maximized). Therefore, we

can write
S =2 B—l + B+l l—2B+ 1—i2—'f(B)
- B B) B B '

Clearly, f increases on [1,0). Since

Ql

1 1 1
B+—==A+— — =4
+ 3 +1T0+524

we have B > B’, where B’ = 2 + +/3 is the unique root greater than 1 of the equation
"+ 1/B’ = 4. Hence,

) | 1N 2 4
S>f(B)>f(B)_2(B—§>+<B +§>§_2B B'+B’_8'

It remains to note that when A = C' =1 and B = B’ we have the equality S = 8.
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Solution 3. We present another proof of the inequality S > 8. We start with the estimate

<a+c>+ b+d - ac+2 Jbd
b d c a)” bd ac’

Let y = y/ac and z = Vbd, and assume, without loss of generality, that ac > bd. By the
AM-GM inequality, we have

Y2+ 22 =ac+bd = (a+c)(b+d) = 2vac- 2Vbd = 4yz.

Substituting = = y/z, we get 4r < 2? + 1. For x > 1, this holds if and only if z > 2 + /3.

Now we have
ac _ 9 ( )
\/ \/ ac

Clearly, this is minimized by setting (> 1) as close to 1 as possible, i.e., by taking 2 = 2 ++/3.
Then 2(x + 1/z) = 2((2 + V/3) + (2 — 1/3)) = 8, as required.
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Let a, b, ¢, d be four real numbers such that a >b>c>d>0anda+b+c+d = 1.
Prove that
(a4 2b+3c+4d)a® b c“d? < 1.

(Belgium,)
Solution 1. The weighted AM—GM inequality with weights a, b, ¢, d gives
at’cfdi<a-a+b-b+c-c+d-d=a>+b+c+d,
so it suffices to prove that (a + 20+ 3c+ 4d)(a* + b* + 2 + d*) <1 = (a+ b+ ¢+ d)?. This can
be done in various ways, for example:
(a+b+c+d)?®>d*(a+3b+3c+3d) +b*(3a + b + 3¢ + 3d)
+*(3a+3b+ ¢+ 3d) + d*(3a + 3b + 3¢ + d)
> (a® + b+ +d?) - (a+2b+ 3c+4d).

Solution 2. From b > d we get
a+20+3c+4d<a+3b+3c+3d=3—2a.
Ifa< %, then the statement can be proved by
(a + 2b + 3¢ + 4d) a®b’c°d® < (3 — 2a)aa’a‘a’ = (3 —2a)a =1 — (1 —a)(1 — 2a) < 1.
From now on we assume 1 < a < 1.
By b,¢,d <1 — a we have
Wedd < (1—a)-(1—a) (1—a)=(1—-a)"
Therefore,
(a + 2b+ 3¢ + 4d)a®t’c?d? < (3 — 2a) a” (1 — a)* .
For 0 < z < 1, consider the functions
flz) = (3—-2x)2"(1—2)"" and g(zx)=log f(x) = log(3 —2x) + xlogx + (1 — x) log(1 — z);
hereafter, log denotes the natural logarithm. It is easy to verify that

4 11 1+8(1—2)?
"
=79 o2 T = 0
g'() (3—2x)2+x+1—x x(l—x)(3—2x)2> ’
so g is strictly convex on (0, 1).
By g(3) =log2+2-3logs =0and lim g(z) = 0, we have g(z) < 0 (and hence f(z) < 1)

r—1—

for all z € [1,1), and therefore

(a+2b+ 3¢+ 4d)a“t’c?d® < f(a) < 1.

Comment. For a large number of variables a1 > a2 > ... > a,, > 0 with ), a; = 1, the inequality

(Ziai Ha;-“ < 1
7

i
does not necessarily hold. Indeed, let ag = a3 = ... = a, = € and a1 = 1 — (n — 1)e, where n and
e € (0,1/n) will be chosen later. Then

<Z iai> Ha?i _ (1 + n(nT_l)g) 8(n—l)zS(l . (n _ 1)8)1—(71—1)5. (1)

%
If ¢ = C'/n? with an arbitrary fixed C' > 0 and n — o0, then the factors e(" D¢ = exp((n — 1)eloge)
and (1 — (n —1)e)'=(=1= tend to 1, so the limit of (1) in this set-up equals 1 + C/2. This is not
simply greater than 1, but it can be arbitrarily large.
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A magician intends to perform the following trick. She announces a positive integer
n, along with 2n real numbers x; < ... < x,, to the audience. A member of the audience then
secretly chooses a polynomial P(x) of degree n with real coefficients, computes the 2n values
P(x1),..., P(xs,), and writes down these 2n values on the blackboard in non-decreasing order.
After that the magician announces the secret polynomial to the audience.
Can the magician find a strategy to perform such a trick?
(Luzembourg)

Answer: No, she cannot.

Solution. Let 1 < x5 < ... < X9, be real numbers chosen by the magician. We will construct
two distinct polynomials P(z) and Q(x), each of degree n, such that the member of audience
will write down the same sequence for both polynomials. This will mean that the magician
cannot distinguish P from Q.

Claim. There exists a polynomial P(z) of degree n such that P(zy;_1) + P(xe) = 0 for i =
1,2,...,n.
Proof. We want to find a polynomial a,z" + ... + a1z + ag satisfying the following system of
equations:

(27 4+ 2D)an + (@7 + 23 a1+ ... 4+ 200 =0

(28 4+ 2M)an + (23 + 27 a1+ ... +2a0 =0

(b, 1+ xh Ya, + (:cg,;ll + :cgrjl)an,l +...4+2a,=0

We use the well known fact that a homogeneous system of n linear equations in n + 1
variables has a nonzero solution. (This fact can be proved using induction on n, via elimination
of variables.) Applying this fact to the above system, we find a nonzero polynomial P(x)
of degree not exceeding n such that its coefficients ay, ..., a, satisfy this system. Therefore
P(xg;1) + P(xg;) = 0 for all @ = 1,2,...,n. Notice that P has a root on each segment
[22;_1, x9;] by the Intermediate Value theorem, so n roots in total. Since P is nonzero, we get
deg P = n. ]

Now consider a polynomial P(z) provided by the Claim, and take Q(z) = —P(xz). The
properties of P(z) yield that P(xe;_1) = Q(x2) and Q(x9;_1) = P(xg;) for all i = 1,2,...,n.
It is also clear that P # —P = () and deg () = deg P = n.

Comment. It can be shown that for any positive integer n the magician can choose 2n + 1 distinct
real numbers so as to perform such a trick. Moreover, she can perform such a trick with almost all (in
a proper sense) (2n + 1)-tuples of numbers.
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Determine all functions f: Z — Z such that
O (@ +b) = af(a) + bf(b)  for every a,b e Z.

Here, f™ denotes the n'® iteration of f, i.e., fO(z) = x and f"*(z) = f(f*(z)) for all n = 0.

(Slovakia)
Answer: Either f(z) =0forallz€Z, or f(x) =z + 1 for all z € Z.
Solution. Refer to the main equation as E(a,b).
E(0,b) reads as f¥°(b) = bf(b). For b = —1 this gives f(—1) = 0.
Now E(a,—1) reads as
2 2
[ a—1) = af(a) = f*(a). (1)

For x € Z define the orbit of x by O(z) = {z, f(z), f(f(z)),...} S Z. We see that the orbits
O(a — 1) and O(a) differ by finitely many terms. Hence, any two orbits differ by finitely many
terms. In particular, this implies that either all orbits are finite or all orbits are infinite.

Case 1: All orbits are finite.
Then O(0) is finite. Using E(a, —a) we get
a(f(a) = f(-a)) = af(a) — af(~a) = f*(0) € O(0).
For |a| > moa(>0<)|z|, this yields f(a) = f(—a) and f?*°(0) = 0. Therefore, the sequence
zZE€

(fk(O): k=0,1,.. ) is purely periodic with a minimal period 7' which divides 2a?. Anal-
ogously, T divides 2(a + 1)?, therefore, T|ged(2a% 2(a + 1)%) = 2, ie.,, f(f(0)) = 0 and
a(f(a) = f(—a)) = £29°(0) = 0 for all a. Thus,

fla) = f(—a) for all a # 0; ()
in particular, f(1) = f(-1) =0. (M)

Next, for each n € Z, by F(n,1 —n) we get
nf(n) + (1=n)f(1=n) = f~r05(1) = f27°727(0) = 0. (©)

Assume that there exists some m # 0 such that f(m) # 0. Choose such an m for which |m| is
minimal possible. Then |m| > 1 due to (#); f(|m|) # 0 due to (&); and f(1 — |m|) # 0 due
to (©) for n = |m|. This contradicts to the minimality assumption.

So, f(n) = 0 for n # 0. Finally, f(0) = f3(0) = f4(2) = 2f(2) = 0. Clearly, the function
f(z) = 0 satisfies the problem condition, which provides the first of the two answers.

Case 2: All orbits are infinite.

Since the orbits O(a) and O(a — 1) differ by finitely many terms for all a € Z, each two
orbits O(a) and O(b) have infinitely many common terms for arbitrary a,b € Z.

For a minute, fix any a,b € Z. We claim that all pairs (n,m) of nonnegative integers such
that f™(a) = f™(b) have the same difference n —m. Arguing indirectly, we have f"(a) = f™(b)
and fP(a) = f4(b) with, say, n —m > p — q, then fPHm+k(h) = fPintk(q) = fatntk(p) for all
nonnegative integers k. This means that f*™==r=a(p) = f4(b) for all sufficiently large ¢,
i.e., that the sequence ( f”(b)) is eventually periodic, so O(b) is finite, which is impossible.

Now, for every a,b € Z, denote the common difference n — m defined above by X(a,b).
We have X(a — 1,a) = 1 by (1). Trivially, X(a,b) + X(b,¢) = X(a,c), as if f*(a) = f™(b)
and fP(b) = fi(c), then fP™™(a) = fP*™(b) = f27(c). These two properties imply that
X(a,b) =b—afor all a,b e Z.
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But (1) yields [+ (f(a — 1)) = /*(/(a), s0
1=X(f(a—1),f(a)) = fla) = fla—1) forall aeZ

Recalling that f(—1) = 0, we conclude by (two-sided) induction on z that f(z) = = + 1 for all
x €.
Finally, the obtained function also satisfies the assumption. Indeed, f"(x) = = + n for all
n =0, so
fo(a+0b) =a+b+a®+ b =af(a) + bf(b).

Comment. There are many possible variations of the solution above, but it seems that finiteness of
orbits seems to be a crucial distinction in all solutions. However, the case distinction could be made
in different ways; in particular, there exist some versions of Case 1 which work whenever there is at
least one finite orbit.

We believe that Case 2 is conceptually harder than Case 1.
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A7. Let n and k be positive integers. Prove that for ay,...,a, € [1,2*] one has

n
Z & < 4Vkn.
= Aai+ .. +a?

(Iran)

Solution 1. Partition the set of indices {1,2,...,n} into disjoint subsets M, My, ..., My so
that ap € [2971,27] for £ € M;. Then, if |M;| =: p;, we have

pj

D R Rt
where we used that ay < 2/ and in the denominator every index from M, contributes at least
(27-1)*. Now, using Vi — i — 1 = ﬁ > fﬁ, we deduce that

Zm Z 222(\6—\/1'—1):4\/@.

Therefore, summing over j = 1,..., k and using the QM—AM inequality, we obtain

n
/=1

. . _ n a; .
Comment. Consider the function f(a1,...,a,) = >4 VT One can see that rearranging the
variables in increasing order can only increase the value of f(ai,...,a,). Indeed, if a; > a;1; for some
index 7 then we have

' ‘ o _a b b a

f(ala"'aajfbajJrlaa]’a]JrQa'"aa’n) - flay,...,a,) = g + W g \/ﬁ

where a = a;,b = aj41, and § = a?+ ...+ a] +1- The positivity of the last expression above follows
from

b b a2b ab? a

a
—_—— = > = - —.
S22 S SV —aZ- (S+VS—a?) SVST-02-(S+ST 1) VSZ—1p2 S

Comment. If k£ < n, the example a,, := 28(m~1/7 ghows that the problem statement is sharp up to

a multiplicative constant. For & > n the trivial upper bound n becomes sharp up to a multiplicative
constant.

Solution 2. Apply induction on n. The base n < 16 is clear: our sum does not exceed

n < 4v/nk. For the inductive step from 1,...,n — 1 to n > 17 consider two similar cases.
Case 1: n = 2t.
Let z, = 27 We have
1+ +az
2 2
9 9 9 9 ai+...+a 1
exp(—aj, —...—a) = (1—af,) ... (1—a3,) = L >

a4t ad T L4
where we used that the product is telescopic and then an estimate a;; < 2¥a; fori=1,...,¢.
Therefore, 27, + ...+ x3, < log(4* + 1) < 2k, where log denotes the natural logarithm. This
implies w441 + ... + 2oy < v/2kt. Hence, using the inductive hypothesis for n =t we get

2t

Z 1, < Wkt + V2kt < 42kt

/=1
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Case 2: n =2t + 1.
Analogously, we get 27,5 + ...+ 23,,, < log(4* + 1) < 2k and

2t+1

D we <AVE(E+ 1) + V2kt < 4V/k(2t + 1),

The last inequality is true for all ¢ > 8 since

42t + 1 — /2t = 3V2t = V18t = /16t + 16 = 4/t + 1.
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- Let R be the set of positive real numbers. Determine all functions f: Rt — R
such that, for all positive real numbers x and y,

flz+ flzy) +y = f(2)fy) + 1. (+)
(Ukraine)
Answer: f(z) =z + 1.
Solution 1. A straightforward check shows that f(x) = z + 1 satisfies (*). We divide the
proof of the converse statement into a sequence of steps.
Step 1: f s injective.

Put x =1 in (*) and rearrange the terms to get

y=fMfly)+1-f1+fy)
Therefore, if f(y1) = f(y2), then y; = ys.

Step 2: f is (strictly) monotone increasing.

For any fixed y € R™, the function

g(x) = f(z+ f(zy)) = f(@)f(y) +1—y

is injective by Step 1. Therefore, z1 + f(x1y) # x2 + f(z2y) for all y, x1, x5 € RT with z; # z5.
Plugging in z; = x;y, we arrive at

21— % 1 2) — f(z

L2 ) - fla), or L [EIZTE)

Yy Yy 21 — Z2

for all y, 21, 20 € RT with 21 # 25. This means that the right-hand side of the rightmost relation
is always non-positive, i.e., f is monotone non-decreasing. Since f is injective, it is strictly
monotone.

Step 3: There exist constants a and b such that f(y) = ay + b for all y € RT.

Since f is monotone and bounded from below by 0, for each zy > 0, there exists a right
limit lim,\ 4, f(2) = 0. Put p = lim,~ o f(x) and ¢ = lim,, f(x).

Fix an arbitrary y and take the limit of (x) as = N\, 0. We have f(zy) \, p and hence
f(:c + f(:cy)) \\ ¢; therefore, we obtain

qty—1

q+y=pfly)+1, or f(y) .

(Notice that p # 0, otherwise ¢ + y = 1 for all y, which is absurd.) The claim is proved.
Step 4: f(x) =x +1 for all v € R*.

Based on the previous step, write f(z) = ax + b. Putting this relation into (*) we get
a(r+ary+b) +b+y=(ax+0b)(ay+0b)+1,
which can be rewritten as
(a—ab)z + (1 —ab)y+ab+b—0*—1=0  forall z,ye R".
This identity may hold only if all the coefficients are 0, i.e.,
a—ab=1—-ab=ab+b—b0*—1=0.

Hence, a = b = 1.
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Solution 2. We provide another proof that f(z) = x + 1 is the only function satisfying (x).
Put a = f(1). Define the function ¢: R* — R by

¢(x) = flx) -z - 1.
Then equation () reads as
oz + fzy)) = f(2)f(y) — flay) -z —y. (1)
Since the right-hand side of (1) is symmetric under swapping = and y, we obtain
¢z + flwy)) = oy + f(2y)).
In particular, substituting (x,y) = (¢, 1/t) we get

¢(a+t)=¢><a+%), teR*. (2)

Notice that the function f is bounded from below by a positive constant. Indeed, for each
y € R*, the relation (x) yields f(x)f(y) > y — 1, hence

—1
f(z) > —— for all x € R*.

If y > 1, this provides a desired positive lower bound for f(z).
Now, let M = inf f(z) > 0. Then, for all y € RT,

zeRt
y—1
M=
f(y)

Lemma 1. The function f(z) (and hence ¢(z)) is bounded on any segment [p,q]|, where
0<p<qg< +o0.

or fly) =YL (3)

Proof. f is bounded from below by M. It remains to show that f is bounded from above
on [p,q]. Substituting y = 1 into (x), we get

flz+ f(x)) = af(z). (4)
Take z € [p, q] and put s = f(2). By (4), we have

flz+s)=as and f(z+s+as)=f(z+s+ f(z+5s)) =a’s
Plugging in (z,y) = (2,1 + £) to (+) and using (3), we obtain
f(z+a3)=f(z+f(z+s))zsf(1+§>—§>;[—2z—§.

z
’ z+as

Now, substituting (z,y) = (z + as ) to () and applying the above estimate and the

estimate f(y) = M, we obtain

a2$:f(z+5+a3):f(z+as+f(2)):f(z+a5)f(z+as)+1_z+as
>Mf(z+as)>8—2—%>s_2_%'
z z q p

This yields s < ¢(4 + a?) =: L, and f is bounded from above by L on [p, ¢|. O
p
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Applying Lemma 1 to the segment [a,a + 1], we see that ¢ is bounded on it. By (2) we get
that ¢ is also bounded on [a + 1, +00), and hence on [a, +00). Put C' = max{a, 3}.

Lemma 2. For all x = C, we have ¢(x) = 0 (and hence f(x) =z + 1).
Proof. Substituting y = x to (1), we obtain

d(z + f(2%) = f(2)* = f(2®) — 2,

hence,
¢z + f(2%) + ¢(2%) = f(2)* = (z + 1)* = 6(2) (f(2) + 2 +1). (5)
Since f(z)+x + 1> C + 1> 4, we obtain that
6(0)] < ¢ (16 + 7)) + o)) ()

Since C' > a, there exists a finite supremum S = sup |¢(x)|. For each = € [C,+00), both

z=C
x + f(2%) and 2? are greater than x; hence they also lie in [C, 4+00). Therefore, taking the
supremum of the left-hand side of (6) over x € [C, +o0), we obtain S < S/2 and hence S = 0.
Thus, ¢(x) =0 for all x > C. O

It remains to show that f(y) =y + 1 when 0 <y < C. For each y, choose = > maX{C, %}
Then all three numbers z, zy, and = + f(zy) are greater than C, so (x) reads as

(x+ay+1)+14+y=(r+1)f(y)+1, hence f(y)=y+1.

Comment 1. It may be useful to rewrite (%) in the form
¢z + f(zy)) + ¢(ay) = d(2)d(y) + xd(y) + yo(x) + ¢(x) + ¢(y)-
This general identity easily implies both (1) and (5).

Comment 2. There are other ways to prove that f(x) = z + 1. Once one has proved this, they can
use this stronger estimate instead of (3) in the proof of Lemma 1. Nevertheless, this does not make
this proof simpler. So proving that f(z) > x + 1 does not seem to be a serious progress towards the
solution of the problem. In what follows, we outline one possible proof of this inequality.

First of all, we improve inequality (3) by noticing that, in fact, f(z)f(y) =y — 1 + M, and hence

fly) =z ——+1. (7)

Now we divide the argument into two steps.

Step 1: We show that M < 1.
Suppose that M > 1; recall the notation a = f(1). Substituting y = 1/z in (%), we get

1 1
fata) = f@)f (3) 411 > M)
provided that z > 1. By a straightforward induction on [(x — 1)/a], this yields
flz) =MD, (8)

Now choose an arbitrary zp € R* and define a sequence g, x1,... by pi1 = T+ f(T0) = xn+ M
for all n > 0; notice that the sequence is unbounded. On the other hand, by (4) we get

aTpi1 > af(@n) = fzngr) = M@/

which cannot hold when x,1 is large enough.
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Step 2: We prove that f(y) >y + 1 for ally e RT.

Arguing indirectly, choose y € R™ such that f(y) < y+1, and choose p with f(y) < p < y+ 1. Define a
sequence Ty, x1, ... by choosing a large z¢ = 1 and setting x,+1 = xp + f(zny) = 2, + M foralln =0
(this sequence is also unbounded). If z is large enough, then (7) implies that (u— f(y))f(zn) = 1—y
for all n. Therefore,

f(xn+1) = f(y)f(xn) +1-y< ,U'f(xn)

On the other hand, since M < 1, inequality (7) implies that f(z) > z, provided that z > 1. Hence,
if g is large enough, we have z,1 = x,(1 + y) for all n. Therefore,

.%'0(1 + y)n < T, < f(xn) < ,Unf(ﬂﬁo),

which cannot hold when n is large enough.
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Combinatorics

Let n be a positive integer. Find the number of permutations ai,as, ..., a, of the
sequence 1,2, ..., n satisfying

a1 < 2a9 < 3a3 < ... < nay,. ()
(United Kingdom)

Answer: The number of such permutations is F,,;, where Fj, is the k" Fibonacci number:
Fi=F=1 F=F+F,_1

Solution 1. Denote by P, the number of permutations that satisfy (x). It is easy to see that
PlzlandP2:2.
Lemma 1. Let n > 3. If a permutation a4, ..., a, satisfies () then either a,, =n, or a,_1 =n
and a, =n — 1.
Proof. Let k be the index for which a; = n. If £ = n then we are done.

If £ = n —1 then, by (*), we have n(n — 1) = (n — 1)a,_; < na,, so a, = n — 1. Since
a, # a,_1 = n, the only choice for a, is a, =n — 1.

Now suppose that k& < n — 2. For every k < ¢ < n we have kn = ka, < ia; < na;, so
a; = k + 1. Moreover, na, = (n—1)a,_1 = (n—1)(k+1) = nk+ (n—1—-k) > nk, so

a, = k+ 1. Now the n — k + 1 numbers ag, agy1,...,a, are all greater than k; but there are
only n — k such values; this is not possible. O
If a,, = n then a4, as, ..., a,_1 must be a permutation of the numbers 1,...,n — 1 satisfying

a; <2a3 < ...<(n—1)a,_1; there are P, ; such permutations. The last inequality in (x),
(n —1)a,_1 < na, = n?, holds true automatically.

If (ap-1,a,) = (n,n—1), then ay, ..., a,_» must be a permutation of 1,...,n — 2 satisfying
a; < ... < (n—2)a,_»; there are P,_5 such permutations. The last two inequalities in (*) hold
true automatically by (n — 2)a, o < (n —2)2 <n(n—1) = (n — 1)a,_1 = na,.

Hence, the sequence (Py, Ps, .. .) satisfies the recurrence relation P, = P, 1+ P,_, forn > 3.
The first two elements are P, = F, and P, = F3, so by a trivial induction we have P, = F, .

Solution 2. We claim that all sought permutations are of the following kind. Split {1,2,...,n}
into singletons and pairs of adjacent numbers. In each pair, swap the two numbers and keep
the singletons unchanged.

Such permutations correspond to tilings of a 1 x n chessboard using dominoes and unit
squares; it is well-known that the number of such tilings is the Fibonacci number F), .

The claim follows by induction from

Lemma 2. Assume that ay,...,a, is a permutation satisfying (+), and k is an integer such that
1<k <nand{ay,as,...,a,1} = {1,2,...,k—1}. (If £ =1, the condition is empty.) Then
either a, = k, or ap = k+ 1 and ag,1 = k.

Proof. Choose t with a; = k. Since k ¢ {aq,...,a,_1}, we have either t =k ort > k. If t = k
then we are done, so assume t > k.

Notice that one of the numbers among the ¢t — k numbers ag, ag,1,...,a;_1 is at least t,
because there are only ¢ — k£ — 1 values between k and ¢. Let ¢ be an index with £ < i < ¢ and
a; = t; then kt = ta; > ia; > 1t > kt, so that all the inequalities turn into equalities, hence
t=kandap =t Ift=~Fk+ 1, we are done.

Suppose that ¢ > k£ + 1. Then the chain of inequalities kt = ka, < ... < ta; = kt should
also turn into a chain of equalities. From this point we can find contradictions in several ways;

kt

for example by pointing to a;—; = 7 =k + % which cannot be an integer, or considering
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the product of the numbers (k + 1)ags1, ..., (t —1)a;—1; the numbers ag,1, ..., a,—1 are distinct
and greater than k, so

(k) F " = (K + Daggy - (B +2apgo ... - (t—1)ay_y = ((k +1)(k+2)-...-(t— 1))2.

Notice that (k+i)(t—i) = kt+i(t—k—1i) > kt for 1 <i < t—k. This leads to the contradiction
() = (k+ D) (k+2)-...-(t—1)) H (k+4)(t — i) > (k)" 1.

Therefore, the case t > k + 1 is not possible. ]
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C2. In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are
colored white. Prove that there exist 24 convex quadrilaterals @)1, ..., Q24 whose corners are
vertices of the 100-gon, so that

e the quadrilaterals @)y, ..., QJo4 are pairwise disjoint, and

e every quadrilateral (); has three corners of one color and one corner of the other color.

(Austria)

Solution. Call a quadrilateral skew-colored, if it has three corners of one color and one corner
of the other color. We will prove the following

Claim. If the vertices of a convex (4k + 1)-gon P are colored black and white such that each
color is used at least k times, then there exist k pairwise disjoint skew-colored quadrilaterals
whose vertices are vertices of P. (One vertex of P remains unused.)

The problem statement follows by removing 3 arbitrary vertices of the 100-gon and applying
the Claim to the remaining 97 vertices with k& = 24.

Proof of the Claim. We prove by induction. For £k = 1 we have a pentagon with at least
one black and at least one white vertex. If the number of black vertices is even then remove
a black vertex; otherwise remove a white vertex. In the remaining quadrilateral, there are an
odd number of black and an odd number of white vertices, so the quadrilateral is skew-colored.

For the induction step, assume k > 2. Let b and w be the numbers of black and white
vertices, respectively; then b,w > k and b + w = 4k + 1. Without loss of generality we may
assume w > b, so k< b<2kand 2k +1 < w <3k + 1.

We want to find four consecutive vertices such that three of them are white, the fourth one
is black. Denote the vertices by Vi, Vs, ..., Vi1 in counterclockwise order, such that Vy,q is
black, and consider the following k groups of vertices:

(VYh ‘/27 ‘/37 ‘/4)7 (‘/57 ‘/67 ‘/77 ‘/8)7 ey (‘/zlk—fi) ‘/zlk—Qa Vzlk—la ‘/zlk)

In these groups there are w white and b — 1 black vertices. Since w > b — 1, there is a group,
(Vi, Vi1, Visa, Vies) that contains more white than black vertices. If three are white and one
is black in that group, we are done. Otherwise, if V;, Vi1, Viio, Viys are all white then let V;
be the first black vertex among V;.4, ..., Vigs1 (vecall that Vigiq is black); then V;_3, V;_o and
V;_1 are white and Vj is black.

Now we have four consecutive vertices V;, V;,1, Vi 9, Viys that form a skew-colored quadri-
lateral. The remaining vertices form a convex (4k — 3)-gon; w — 3 of them are white and b — 1
are black. Sinceb—1>k—1and w—3 > (2k+1)—3 > k — 1, we can apply the Claim
with k — 1. ]

Comment. It is not true that the vertices of the 100-gon can be split into 25 skew-colored quadri-
laterals. A possible counter-example is when the vertices Vi, V3, Vs, ..., Vg1 are black and the other
vertices, Vo, Vy,...,Vgo and Vgo, Vi3,..., Vigp are white. For having 25 skew-colored quadrilaterals,
there should be 8 containing three black vertices. But such a quadrilateral splits the other 96 vertices
into four sets in such a way that at least two sets contain odd numbers of vertices and therefore they
cannot be grouped into disjoint quadrilaterals.
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C3. Let n be an integer with n > 2. On a slope of a mountain, n? checkpoints are
marked, numbered from 1 to n? from the bottom to the top. Each of two cable car companies,
A and B, operates k cable cars numbered from 1 to k; each cable car provides a transfer from
some checkpoint to a higher one. For each company, and for any ¢« and j with 1 <17 < j <k,
the starting point of car j is higher than the starting point of car ; similarly, the finishing point
of car j is higher than the finishing point of car ¢. Say that two checkpoints are linked by some
company if one can start from the lower checkpoint and reach the higher one by using one or
more cars of that company (no movement on foot is allowed).

Determine the smallest k for which one can guarantee that there are two checkpoints that

are linked by each of the two companies.
(India)

Answer: k =n?>—n+ 1.

Solution. We start with showing that for any k& < n? — n there may be no pair of checkpoints
linked by both companies. Clearly, it suffices to provide such an example for & = n? — n.

Let company A connect the pairs of checkpoints of the form (4,7 4+ 1), where n 1 7. Then all
pairs of checkpoints (i, j) linked by A satisty [i/n| = [j/n].

Let company B connect the pairs of the form (i,7 + n), where 1 < i < n? —n. Then pairs
of checkpoints (7, ) linked by B satisfy ¢ = j (mod n). Clearly, no pair (7, ) satisfies both
conditions, so there is no pair linked by both companies.

Now we show that for k = n? — n + 1 there always exist two required checkpoints. Define

an A-chain as a sequence of checkpoints a; < as < ... < a; such that company A connects a;
with a;,1 for all 1 < i <t — 1, but there is no A-car transferring from some checkpoint to a;
and no A-car transferring from a; to any other checkpoint. Define B-chains similarly. Moving
forth and back, one easily sees that any checkpoint is included in a unique A-chain (possibly
consisting of that single checkpoint), as well as in a unique B-chain. Now, put each checkpoint
into a correspondence to the pair of the A-chain and the B-chain it belongs to.

All finishing points of A-cars are distinct, so there are n?> — k = n — 1 checkpoints that are
not such finishing points. Each of them is a starting point of a unique A-chain, so the number of
A-chains is n — 1. Similarly, the number of B-chains also equals n— 1. Hence, there are (n—1)?
pairs consisting of an A- and a B-chain. Therefore, two of the n? checkpoints correspond to
the same pair, so that they belong to the same A-chain, as well as to the same B-chain. This
means that they are linked by both companies, as required.

Comment 1. The condition that the i*" car starts and finishes lower than the 7' one is used only
in the “moving forth and back” argument and in the counting of starting points of the chains. In both
cases, the following weaker assumption suffices: No two cars of the same company start at the same
checkpoint, and no two such cars finish at the same checkpoint.

Thus, the problem conditions could be weakened in this way, with no affect on the solution.

Comment 2. If the number of checkpoints were IV, then the answer would be N — [\/N ] + 1. The
solution above works verbatim for this generalization.
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C4. The Fibonacci numbers Fy, Fy, Fs, ... are defined inductively by Fy = 0, F} = 1, and
F,.1=F,+ F,_1 forn>1. Given an integer n > 2, determine the smallest size of a set S of

integers such that for every k = 2,3,... n there exist some x,y € S such that r —y = Fj.
(Croatia)

Answer: [n/2] + 1.

Solution. First we show that if a set S c Z satisfies the conditions then S| > & + 1.

Let d = [n/2], so n < 2d < n+ 1. In order to prove that |S| = d + 1, construct a graph
as follows. Let the vertices of the graph be the elements of S. For each 1 < k < d, choose two
elements x,y € S such that  —y = Fy,_1, and add the pair (z,y) to the graph as edge. (Note
that by the problem’s constraints, there must be a pair (x,y) with x —y = Fy,_ for every
3 <2k —1<2d—1 < n; moreover, due to F; = F, we have a pair with x —y = F} as well.)
We will say that the length of the edge (x,y) is |z — y].

We claim that the graph contains no cycle. For the sake of contradiction, suppose that
the graph contains a cycle (z1,...,2), and let the longest edge in the cycle be (z1,z,) with
length F5,,,1. The other edges (x1,23),...,(zs_1,x,) in the cycle are shorter than Fy,,,; and
distinct, their lengths form a subset of {Fy, F3, ..., Fy,_1}. But this is not possible because

-1
Fopir = |wp — 11| < 2 |Tip1 — x| S Fu+ Fs + Fs + ... 4 Fopy
i=1

= F2 + (F4 — FQ) + (FG — F4) + ...+ (Fgm — Fgm_g) = Fgm < F2m+1-

Hence, the graph has d edges and cannot contain a cycle, therefore it must contain at least
d + 1 vertices, so |S| = d + 1.

Now we show a suitable set with d + 1 elements. Let
S: {F07F27F47F57"'7F2d}-

For 1 < k < d we have Fo, ng,Q, FQk € S with differences ng—FQk,Q = FQk,1 and F2k_FO = FQk,
so each of Fy, Iy, ..., Fy; occurs as difference between two elements in S. So this set containing
d + 1 numbers is suitable.
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C5. Let p be an odd prime, and put N = i(p3 —p) — 1. The numbers 1,2,..., N are
painted arbitrarily in two colors, red and blue. For any positive integer n < N, denote by r(n)
the fraction of integers in {1,2,... ,n} that are red.

Prove that there exists a positive integer a € {1,2,...,p — 1} such that r(n) # a/p for all
n=12,...,N.
(Netherlands)

Solution. Denote by R(n) the number of red numbers in {1,2,...,n}, i.e., R(n) = nr(n).
Similarly, denote by B(n) and b(n) = B(n)/n the number and proportion of blue numbers
in {1,2,...,n}, respectively. Notice that B(n)+ R(n) = n and b(n) + r(n) = 1. Therefore, the
statement of the problem does not change after swapping the colors.

Arguing indirectly, for every a € {1,2,...,p — 1} choose some positive integer n, such that
r(n.) = a/p and, hence, R(n,) = an,/p. Clearly, p | n,, so that n, = pm, for some positive
integer m,, and R(n,) = am,. Without loss of generality, we assume that m; < m,_;, as
otherwise one may swap the colors. Notice that

N 21
ma<—<p foralla=1,2,...,p— 1. (1)
p
The solution is based on a repeated application of the following simple observation.
Claim. Assume that m, < m, for some a,be {1,2,...,p— 1}. Then
my = gma and my = Ema.
b p—2>b

Proof. The first inequality follows from bm;, = R(n) > R(n,) = am,. The second inequality is
obtained by swapping colors . O

Let ¢ = (p —1)/2. We distinguish two cases.

Case 1: All ¢ numbers my, ma, ..., my are smaller than m,_;.

Let m, be the maximal number among my, ma, ..., my; then m, > ¢ > a. Applying the Claim,
we get
p*—1

4 )

p—a
my_1 = M > (p—aq)g=

p—(p—1
which contradicts (1).

Case 2: There exists k < q such that my > my_;.

Choose k to be the smallest index satisfying my > m,,_1; by our assumptions, we have 1 < k <
qg<p-—1.

Let m, be the maximal number among m;, mg,...,my_1; then a < k -1 < my, < my_;.
Applying the Claim, we get

which contradicts (1) again.

Comment 1. The argument in Case 2, after a slight modification of estimates at the end, applies
as soon as there exists k < @ with ap < a,—1. However, this argument does not seem to work if
there is no such k.
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Comment 2. If p is small enough, then one can color {1,2,..., N+1} so that there exist numbers m;,
ma, ..., mpy_1 satisfying r(pmg) = a/p. For p = 3,5,7, one can find colorings providing the following
sequences:

(mq,mgo) = (1,2), (mq,mg,mg,my) = (1,2,3,6), and (mq,...,,mg) = (1,2,3,4,6,12),
respectively.

Thus, for small values of p, the number NV in the problem statement cannot be increased. However,
a careful analysis of the estimates shows that this number can be slightly increased for p > 11.
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C6. 4n coins of weights 1,2, 3,...,4n are given. Each coin is colored in one of n colors
and there are four coins of each color. Show that all these coins can be partitioned into two
sets with the same total weight, such that each set contains two coins of each color.

(Hungary)

Solution 1. Let us pair the coins with weights summing up to 4n + 1, resulting in the set S
of 2n pairs: {1,4n}, {2,4n — 1}, ..., {2n,2n + 1}. It suffices to partition S into two sets, each
consisting of n pairs, such that each set contains two coins of each color.

Introduce a multi-graph G (i.e., a graph with loops and multiple edges allowed) on n vertices,
so that each vertex corresponds to a color. For each pair of coins from S, we add an edge between
the vertices corresponding to the colors of those coins. Note that each vertex has degree 4. Also,
a desired partition of the coins corresponds to a coloring of the edges of G' in two colors, say
red and blue, so that each vertex has degree 2 with respect to each color (i.e., each vertex has
equal red and blue degrees).

To complete the solution, it suffices to provide such a coloring for each component G’ of G.
Since all degrees of the vertices are even, in G’ there exists an Euler circuit C' (i.e., a circuit
passing through each edge of G’ exactly once). Note that the number of edges in C'is even (it
equals twice the number of vertices in G”). Hence all the edges can be colored red and blue so
that any two edges adjacent in C' have different colors (one may move along C' and color the
edges one by one alternating red and blue colors). Thus in G’ each vertex has equal red and
blue degrees, as desired.

Comment 1. To complete Solution 1, any partition of the edges of G into circuits of even lengths
could be used. In the solution above it was done by the reference to the well-known Euler Circuit
Lemma: Let G be a connected graph with all its vertices of even degrees. Then there exists a circuit
passing through each edge of G exactly once.

Solution 2. As in Solution 1, we will show that it is possible to partition 2n pairs {1, 4n},
{2,4n—1}, ..., {2n,2n+ 1} into two sets, each consisting of n pairs, such that each set contains
two coins of each color.

Introduce a multi-graph (i.e., a graph with multiple edges allowed) I whose vertices corre-
spond to coins; thus we have 4n vertices of n colors so that there are four vertices of each color.
Connect pairs of vertices {1,4n}, {2,4n — 1}, ..., {2n,2n + 1} by 2n black edges.

Further, for each monochromatic quadruple of vertices ¢, 7, k, ¢ we add a pair of grey edges
forming a matching, e.g., (7,7) and (k,¢). In each of n colors of coins we can choose one of
three possible matchings; this results in 3" ways of constructing grey edges. Let us call each of
3™ possible graphs I a cyclic graph. Note that in a cyclic graph I' each vertex has both black
and grey degrees equal to 1. Hence I' is a union of disjoint cycles, and in each cycle black and
grey edges alternate (in particular, all cycles have even lengths).

It suffices to find a cyclic graph with all its cycle lengths divisible by 4. Indeed, in this case,
for each cycle we start from some vertex, move along the cycle and recolor the black edges
either to red or to blue, alternating red and blue colors. Now blue and red edges define the
required partition, since for each monochromatic quadruple of vertices the grey edges provide
a bijection between the endpoints of red and blue edges.

Among all possible cyclic graphs, let us choose graph I'y having the minimal number of
components (i.e., cycles). The following claim completes the solution.

Claim. In Ty, all cycle lengths are divisible by 4.

Proof. Assuming the contrary, choose a cycle C; with an odd number of grey edges. For some
color ¢ the cycle C] contains exactly one grey edge joining two vertices ¢, j of color ¢, while the
other edge joining two vertices k, ¢ of color ¢ lies in another cycle Cy. Now delete edges (i, 7)
and (k,¢) and add edges (i, k) and (j, ¢). By this switch we again obtain a cyclic graph I'{; and
decrease the number of cycles by 1. This contradicts the choice of I'y. O
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Comment 2. Use of an auxiliary graph and reduction to a new problem in terms of this graph is one
of the crucial steps in both solutions presented. In fact, graph G from Solution 1 could be obtained
from any graph I' from Solution 2 by merging the vertices of the same color.
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- Consider any rectangular table having finitely many rows and columns, with a real
number a(r, ¢) in the cell in row r and column ¢. A pair (R, ('), where R is a set of rows and
C a set of columns, is called a saddle pair if the following two conditions are satisfied:

(7)  For each row 7/, there is r € R such that a(r,c) = a(r’, ¢) for all ¢ € C;

(27)  For each column ¢, there is ¢ € C' such that a(r,c) < a(r, ) for all r € R.

A saddle pair (R, C) is called a minimal pair if for each saddle pair (R, C") with R’ € R
and C' < C, we have R = R and C' = C.

Prove that any two minimal pairs contain the same number of rows.

(Thailand)

Solution 1. We say that a pair (R',C") of nonempty sets is a subpair of a pair (R,C) if
R' < R and C" < C. The subpair is proper if at least one of the inclusions is strict.

Let (Ry,Cy) and (Ry,C3) be two saddle pairs with |Ry| > |Ry|. We will find a saddle
subpair (R',C") of (Ry,Cy) with |R/| < |Ry|; clearly, this implies the desired statement.

Step 1: We construct maps p: Ry — Ry and o: C; — C) such that |p(Ry)| < |Rs|, and
a(p(rl),cl) > a(’r’l,a(cl)) for all ri € Ry and ¢, € Cy.

Since (Ry, C}) is a saddle pair, for each 9 € Ry there is r; € Ry such that a(ry, c1) = a(re, ¢1)
for all ¢; € Cy; denote one such an 7, by p;(r2). Similarly, we define four functions

p1: Ry — R; such that (p1 T9 ,cl)

po: Ry — Ry such that (pz 1)

o1: Cy — C7 such that (Tl, o1(ca

oy: Oy — Cy such that (TQ, oa(cq

a(rg,c1) forall roe Ry, ¢ €Chy;

, Co (ri,c9) forall rie Ry, co€Cy;

)

)

Set now p =piopy: Ry — Ry and 0 = g1 009: C; — C7. We have
Ip(R1)| = |p1(p2(Ra))| < |p1(R2)| < |Ral.

Moreover, for all r; € Ry and ¢ € C}, we get

NNV

a
a(ry,co) forall rie Ry, c¢o€Cy;
a

(ro,c1) forall rye Ry, ¢ €Ch.

a(p('rl),cl) = a(p1(p2(7’1)),cl) = a(pz(’f’l)acl) = a(/)2(7’1)7‘72(cl))
> a('rl,ag(cl)) = a(T1,01(02(C1))) = a(’rl,a(cl)), (2)

as desired.

Step 2: Given maps p and o, we construct a proper saddle subpair (R, C") of (Ry,Ch).
The properties of p and o yield that

a(p'(r1).c1) = a(p' "' (r1),0(c1)) = ... = a(r,0'(c1)),

for each positive integer ¢ and all r € Ry, ¢; € C].

Consider the images R’ = p'(R;) and C* = ¢*(C}). Clearly, Ry = R® 2 R' 2 R* 2 ... and
C, =C"2C"'"2(C?% o .... Since both chains consist of finite sets, there is an index n such
that R" = R"™' = ... and C" = C"*! = ..., Then p"(R") = R*" = R", so p" restricted to R"
is a bijection. Similarly, o™ restricted to C™ is a bijection from C" to itself. Therefore, there
exists a positive integer k such that p™* acts identically on R", and ¢™ acts identically on C™.

We claim now that (R",C™) is a saddle subpair of (Ry,C}), with |R"| < |R'| = |p(R;)| <
|Ry|, which is what we needed. To check that this is a saddle pair, take any row 7’; since
(Ry,CY) is a saddle pair, there exists 7 € Ry such that a(ry,c1) = a(r’, ¢1) for all ¢; € C;. Set
now r, = p™*(ry) € R". Then, for each ¢ € C™ we have ¢ = 0™ (c) and hence

a(ry,c) = a(p™(r),¢) = a(ry,0™(c)) = a(ri,c) = a(r’,c),

which establishes condition (¢). Condition (i7) is checked similarly.
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Solution 2. Denote by R and C the set of all rows and the set of all columns of the table,
respectively. Let T denote the given table; for a set R of rows and a set C of columns, let
TR, C] denote the subtable obtained by intersecting rows from R and columns from C.

We say that row ry exceeds row 1o in range of columns C' (where C' < C) and write r; >¢ 79
or 1y <¢ 11, if a(ry,¢) = a(rqg,c) for all ¢ € C. We say that a row r; is equal to a row ry in
range of columns C and write r; =¢ 19, if a(r1, ¢) = a(rq, ¢) for all ¢ € C. We introduce similar
notions, and use the same notation, for columns. Then conditions () and (i7) in the definition
of a saddle pair can be written as (i) for each r’ € R there exists r € R such that r >¢ r’; and
(i) for each ¢’ € C there exists ¢ € C such that ¢ <g ¢.

Lemma. Suppose that (R,C') is a minimal pair. Remove from the table several rows outside
of R and/or several columns outside of C. Then (R, () remains a minimal pair in the new
table.

Proof. Obviously, (R, C') remains a saddle pair. Suppose (R, C") is a proper subpair of (R, C).
Since (R, C) is a saddle pair, for each row r* of the initial table, there is a row r € R such that
r >=cr*. If (R, C") became saddle after deleting rows not in R and/or columns not in C, there
would be a row 1’ € R’ satisfying v’ >/ r. Therefore, we would obtain that r’ > r*, which is
exactly condition (i) for the pair (R’,C") in the initial table; condition (¢7) is checked similarly.
Thus, (R, C") was saddle in the initial table, which contradicts the hypothesis that (R, C') was
minimal. Hence, (R, C') remains minimal after deleting rows and/or columns. ]

By the Lemma, it suffices to prove the statement of the problem in the case R = R; U Ry and
C = (7 u Cy. Further, suppose that there exist rows that belong both to R; and Rs. Duplicate
every such row, and refer one copy of it to the set Ry, and the other copy to the set Ry. Then
(Ry1,Ch) and (Ry, Cy) will remain minimal pairs in the new table, with the same numbers of
rows and columns, but the sets R; and Ry will become disjoint. Similarly duplicating columns
in C7 n Cy, we make C and C5 disjoint. Thus it is sufficient to prove the required statement
in the case Ry " Ry = @ and C; n Cy = <.

The rest of the solution is devoted to the proof of the following claim including the statement
of the problem.
Claim. Suppose that (R, C}) and (Rg, Cs) are minimal pairs in table 7T such that Ry = R\ Ry
and Cy = C\ C. Then |R;| = |Ra|, |C1] = |Cs|; moreover, there are four bijections

p1: Ry — Ry such that pi(rs)
p2: Ry — Ry such that po(ry)
o1: Cy — Cy  such that oy(co)

oy: C1 — Cy such that o9(c;) =g, ¢; forall ¢ € C}.

T2

Il

o, o forall rye Ry;
o, 11 forall r e Ry;

R, C2 forall coe Oy

(3)

We prove the Claim by induction on |R| + |C|. In the base case we have |R;| = |Ry| =
|C1| = |Cs| = 1; let R; = {r;} and C; = {¢;}. Since (Ry,C}) and (Ry, Cy) are saddle pairs,
we have a(ry,c1) = a(re, c1) = a(re, c2) = al(ry, o) = a(ry, ¢1), hence, the table consists of four
equal numbers, and the statement follows.

To prove the inductive step, introduce the maps p;, p2, 01, and oy as in Solution 1, see (1).
Suppose first that all four maps are surjective. Then, in fact, we have |R;| = |Rs|, |C1| = |C4,
and all maps are bijective. Moreover, for all vy € Ry and ¢, € C5 we have

a(ry, ¢2) < a(ra, 051 (c2)) < a(pi(r2), 057 (c2)) < apa(r2), 07" 0 05 (c2))
<a(pyopi(ra), o7t 0oyt (c2)). (4)
Summing up, we get

2 a(rsy, ca) < Z a(p2 o pi(ra), o7 00y (c2)).

T‘QERQ TQERQ
CQECQ CQGCQ
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Since p; 0 py and o7 ' oo, ! are permutations of Ry and Cy, respectively, this inequality is in fact
equality. Therefore, all inequalities in (4) turn into equalities, which establishes the inductive
step in this case.

It remains to show that all four maps are surjective. For the sake of contradiction, we
assume that p; is not surjective. Now let R = p;(Ry) and C] = 01(Cy), and set R* = Ry \ R}
and C* = C} \ C]. By our assumption, R* # &.

Let Q be the table obtained from 7 by removing the rows in R* and the columns in C*;
in other words, @ = T[R] U Ry, C; U Cs]. By the definition of p;, for each ry € Ry we have
p1(r2) =c, 12, so a fortiori py(ry) =cr 723 moreover, pi(ry) € Ry. Similarly, C 3 01(c2) <p; c2
for each ¢y € Cy. This means that (R, C7) is a saddle pair in Q. Recall that (Rs, C5) remains
a minimal pair in @, due to the Lemma.

Therefore, Q admits a minimal pair (R;,C}) such that Ry € R} and C; < C}. For a
minute, confine ourselves to the subtable @ = Q[R; U R,,C; U (5]. By the Lemma, the
pairs (Ry,C1) and (Ry,C,) are also minimal in Q. By the inductive hypothesis, we have
|Ry| = |Ri] < |R}| = |p1(R2)| < |Ryl, so all these inequalities are in fact equalities. This
implies that Ry = R, and that p; is a bijection Ry — R}. Similarly, C; = C}, and o, is a
bijection Cy — C]. In particular, (R}, C]) is a minimal pair in Q.

Now, by inductive hypothesis again, we have |R}| = |Rs|, |C}| = |C3|, and there exist four
bijections

pi: Ry — Ry such that p}
py: Ry — Ry such that p

o1: Cy — C] such that o}(ca) =g o forall ¢y € Cy;

=c 19 forall 79 € Ry;

(72)
(ry) =c, 1 forall r e Ry;
(c2)

oy: C1 — Cy such that oh(c)) =g, ¢; forall ¢ € (.

Notice here that o, and o} are two bijections Cy — C satisfying o' (c2) =g/ c2 =g, 01(c2) for
all ¢ € Cy. Now, if 0](c2) # 01(cy) for some ¢y € Cy, then we could remove column o} (cs)
from C{ obtaining another saddle pair (R}, C{\{o}(c2)}) in Q. This is impossible for a minimal
pair (R}, C1); hence the maps o; and o} coincide.

Now we are prepared to show that (R}, C]) is a saddle pair in 7, which yields a desired
contradiction (since (R, C}) is not minimal). By symmetry, it suffices to find, for each " € R,
a row 11 € I such that ry >¢ . If 7' € Ry, then we may put 71 = p1(r'); so, in the sequel we
assume 7’ € R;.

There exists 7y € Ry such that v <g, 795 set 71 = (py)71(r2) € R| and recall that r; =¢,
ro >, 7. Therefore, implementing the bijection o1 = o1, for each ¢; € C we get

a(r',c) < a('r’,afl(cl)) < a(rl,afl(cl)) = a('r’l,ai o afl(cl)) = a(rl,cl),

which shows r’ <¢r 71, as desired. The inductive step is completed.

Comment 1. For two minimal pairs (R1,Cy) and (R, C3), Solution 2 not only proves the required
equalities |Ry| = |Ra| and |C1| = |C2|, but also shows the existence of bijections (3). In simple
words, this means that the four subtables T[Ry,C1], T[R1,C2], T[R2,C1], and T|[Rz, C2] differ only
by permuting rows/columns. Notice that the existence of such bijections immediately implies that
(R1,C2) and (Rg,C}) are also minimal pairs.

This stronger claim may also be derived directly from the arguments in Solution 1, even without
the assumptions Ry n Ry = @ and C; n Cy = &. Indeed, if |R1| = |Ra| and |Cy| = |C3], then similar
arguments show that R” = Ry, C™ = (', and for any r € R"™ and c € C" we have

a(r,c) = a(p"k(r),c) > a(p"k_l(r),a(c)) >...>a(r a"k(c)) = a(r,c).

This yields that all above inequalities turn into equalities. Moreover, this yields that all inequalities
in (2) turn into equalities. Hence pi, p2, 01, and o9 satisfy (3).

It is perhaps worth mentioning that one cannot necessarily find the maps in (3) so as to satisfy
p1 = pgl and o1 = 051, as shown by the table below.
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Comment 2. One may use the following, a bit more entertaining formulation of the same problem.

On a specialized market, a finite number of products are being sold, and there are finitely many retailers
each selling all the products by some prices. Say that retailer r; dominates retailer ro with respect to
a set of products P if r’s price of each p € P does not exceed r9’s price of p. Similarly, product py
exceeds product ps with respect to a set of retailers R, if r’s price of p; is not less than r’s price of po,
for each r € R.

Say that a set R of retailers and a set P of products form a saddle pair if for each retailer v’ there
is r € R dominating r’ with respect to P, and for each product p’ there is p € P exceeding p’ with
respect to R. A saddle pair (R, P) is called a minimal pair if for each saddle pair (R/, P’) with R’ € R
and P’ € P, we have R' = R and P/ = P.

Prove that any two minimal pairs contain the same number of retailers.
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C8. Players A and B play a game on a blackboard that initially contains 2020 copies
of the number 1. In every round, player A erases two numbers x and y from the blackboard,
and then player B writes one of the numbers = + y and |x — y| on the blackboard. The game
terminates as soon as, at the end of some round, one of the following holds:

(1) one of the numbers on the blackboard is larger than the sum of all other numbers;
(2) there are only zeros on the blackboard.

Player B must then give as many cookies to player A as there are numbers on the blackboard.
Player A wants to get as many cookies as possible, whereas player B wants to give as few as
possible. Determine the number of cookies that A receives if both players play optimally.

(Austria)
Answer: 7.

Solution. For a positive integer n, we denote by Ss(n) the sum of digits in its binary represen-
tation. We prove that, in fact, if a board initially contains an even number n > 1 of ones, then
A can guarantee to obtain S(n), but not more, cookies. The binary representation of 2020 is
2020 = 111111001002, so S2(2020) = 7, and the answer follows.

A strategy for A. At any round, while possible, A chooses two equal nonzero numbers on
the board. Clearly, while A can make such choice, the game does not terminate. On the other
hand, A can follow this strategy unless the game has already terminated. Indeed, if A always
chooses two equal numbers, then each number appearing on the board is either 0 or a power of 2
with non-negative integer exponent, this can be easily proved using induction on the number
of rounds. At the moment when A is unable to follow the strategy all nonzero numbers on the
board are distinct powers of 2. If the board contains at least one such power, then the largest
of those powers is greater than the sum of the others. Otherwise there are only zeros on the
blackboard, in both cases the game terminates.

For every number on the board, define its range to be the number of ones it is obtained from.
We can prove by induction on the number of rounds that for any nonzero number k written by
B its range is k, and for any zero written by B its range is a power of 2. Thus at the end of each
round all the ranges are powers of two, and their sum is n. Since Sa(a + b) < Sy(a) + Sa(b) for
any positive integers a and b, the number n cannot be represented as a sum of less than Sy(n)
powers of 2. Thus at the end of each round the board contains at least Sy(n) numbers, while
A follows the above strategy. So A can guarantee at least So(n) cookies for himself.

Comment. There are different proofs of the fact that the presented strategy guarantees at least Sa(n)
cookies for A. For instance, one may denote by ¥ the sum of numbers on the board, and by z the
number of zeros. Then the board contains at least S2(X) + z numbers; on the other hand, during the
game, the number S3(X) + z does not decrease, and its initial value is Sy(n). The claim follows.

A strategy for B. Denote s = Sy(n).
Let x1,..., 2, be the numbers on the board at some moment of the game after B’s turn or
at the beginning of the game. Say that a collection of k signs €1, ..., e € {+1, —1} is balanced if

k
Z Eil; = 0.
i=1

We say that a situation on the board is good if 257! does not divide the number of balanced
collections. An appropriate strategy for B can be explained as follows: Perform a move so that
the situation remains good, while it is possible. We intend to show that in this case B will not
lose more than Sy(n) cookies. For this purpose, we prove several lemmas.

For a positive integer k, denote by (k) the exponent of the largest power of 2 that divides k.
Recall that, by Legendre’s formula, v5(n!) = n — Se(n) for every positive integer n.
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Lemma 1. The initial situation is good.

Proof. In the initial configuration, the number of balanced collections is equal to (n72) We have

" <<n72>) — 1y(n!) — 205 ((n/2)!) = (n — Say(n)) — 2 (g - Sg(n/Q)) = Sy(n) = s.

Hence 2°*! does not divide the number of balanced collections, as desired. ]

Lemma 2. B may play so that after each round the situation remains good.

Proof. Assume that the situation (z1,...,z;) before a round is good, and that A erases two
numbers, x, and z,.

Let N be the number of all balanced collections, N, be the number of those having €, = ¢,
and N_ be the number of other balanced collections. Then N = N, + N_. Now, if B replaces
x, and x, by x, + x,, then the number of balanced collections will become N, . If B replaces
z, and x, by |z, — x,|, then this number will become N_. Since 2°™' does not divide N, it
does not divide one of the summands N, and N_, hence B can reach a good situation after
the round. ]

Lemma 3. Assume that the game terminates at a good situation. Then the board contains at
most s numbers.

Proof. Suppose, one of the numbers is greater than the sum of the other numbers. Then the
number of balanced collections is 0 and hence divisible by 2°*!. Therefore, the situation is not
good.

Then we have only zeros on the blackboard at the moment when the game terminates. If
there are k of them, then the number of balanced collections is 2*. Since the situation is good,
we have k < s. (]

By Lemmas 1 and 2, B may act in such way that they keep the situation good. By Lemma 3,
when the game terminates, the board contains at most s numbers. This is what we aimed to
prove.

Comment 1. If the initial situation had some odd number n > 1 of ones on the blackboard, player A
would still get Sa(n) cookies, provided that both players act optimally. The proof of this fact is similar
to the solution above, after one makes some changes in the definitions. Such changes are listed below.

Say that a collection of k signs e1,...,e, € {+1,—1} is positive if
k
Z Eix; > 0.
i=1
For every index i = 1,2,...,k, we denote by N; the number of positive collections such that ¢; = 1.

Finally, say that a situation on the board is good if 2°~! does not divide at least one of the numbers N;.
Now, a strategy for B again consists in preserving the situation good, after each round.

Comment 2. There is an easier strategy for B, allowing, in the game starting with an even number
n of ones, to lose no more than d = |logy(n +2)| — 1 cookies. If the binary representation of n contains
at most two zeros, then d = S3(n), and hence the strategy is optimal in that case. We outline this
approach below.

First of all, we can assume that A never erases zeros from the blackboard. Indeed, A may skip
such moves harmlessly, ignoring the zeros in the further process; this way, A’s win will just increase.

We say that a situation on the blackboard is pretty if the numbers on the board can be partitioned
into two groups with equal sums. Clearly, if the situation before some round is pretty, then B may
play so as to preserve this property after the round. The strategy for B is as follows:

e B always chooses a move that leads to a pretty situation.
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e If both possible moves of B lead to pretty situations, then B writes the sum of the two numbers
erased by A.

Since the situation always remains pretty, the game terminates when all numbers on the board are
ZEros.

Suppose that, at the end of the game, there are m > d+ 1 = |logy(n + 2)| zeros on the board; then
2m —1>n/2.

Now we analyze the whole process of the play. Let us number the zeros on the board in order
of appearance. During the play, each zero had appeared after subtracting two equal numbers. Let
ni,...,N, be positive integers such that the first zero appeared after subtracting ny from ni, the
second zero appeared after subtracting no from ns, and so on. Since the sum of the numbers on the
blackboard never increases, we have 2ny + ... + 2n,, < n, hence

ny+...+n, <n/2<2™—-1.

There are 2™ subsets of the set {1,2,...,m}. For I < {1,2,...,m}, denote by f(I) the sum
Dics - There are less than 2 possible values for f(I), so there are two distinct subsets I and J with
f(I) = f(J). Replacing I and J with I\ J and J\ I, we assume that [ and J are disjoint.

Let ig be the smallest number in I U J; without loss of generality, ig € I. Consider the round when
A had erased two numbers equal to n;,, and B had put the io™ zero instead, and the situation before
that round.

For each nonzero number z which is on the blackboard at this moment, we can keep track of it
during the further play until it enters one of the numbers n;, ¢ > ig, which then turn into zeros. For
every ¢ = i9,%9+ 1,...,m, we denote by X; the collection of all numbers on the blackboard that finally
enter the first copy of n;, and by Y; the collection of those finally entering the second copy of n;. Thus,
each of X;, and Y;, consists of a single number. Since A never erases zeros, the 2(m — ig + 1) defined
sets are pairwise disjoint.

Clearly, for either of the collections X; and Y;, a signed sum of its elements equals n;, for a proper
choice of the signs. Therefore, for every i = ig,ig + 1,...,m one can endow numbers in X; u Y; with
signs so that their sum becomes any of the numbers —2n;, 0, or 2n;. Perform such endowment so as
to get 2n; from each collection X; U Y; with ¢ € I, —2n; from each collection X; U Y; with j € J, and
0 from each remaining collection. The obtained signed sum of all numbers on the blackboard equals

ZQni—ZQni =0,

el eJ

and the numbers in Xj;, and Y;, have the same (positive) sign.

This means that, at this round, B could add up the two numbers n;, to get a pretty situation.
According to the strategy, B should have performed that, instead of subtracting the numbers. This
contradiction shows that m < d, as desired.
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Geometry

Let ABC' be an isosceles triangle with BC = C'A, and let D be a point inside side
AB such that AD < DB. Let P and @ be two points inside sides BC' and C'A, respectively,
such that ZDPB = /DQA = 90°. Let the perpendicular bisector of PQ) meet line segment
CQ at E, and let the circumcircles of triangles ABC' and C'P(@) meet again at point F', different
from C.
Suppose that P, E, F' are collinear. Prove that ZAC'B = 90°.
(Luzembourg)

Solution 1. Let ¢ be the perpendicular bisector of P@), and denote by w the circle C'F PQ).
By DP 1 BC and D@ 1 AC, the circle w passes through D; moreover, C'D is a diameter of w.

The lines QF and PE are symmetric about ¢, and ¢ is a symmetry axis of w as well; it
follows that the chords C'Q) and F'P are symmetric about ¢, hence C' and F' are symmetric
about ¢. Therefore, the perpendicular bisector of C'F' coincides with ¢. Thus ¢ passes through
the circumcenter O of ABC.

Let M be the midpoint of AB. Since CM | DM, M also lies on w. By ZACM = /BCM,
the chords M P and M@ of w are equal. Then, from MP = MQ it follows that ¢ passes
through M.

C

M=0 'B

Finally, both O and M lie on lines ¢ and C M, therefore O = M, and ZAC'B = 90° follows.

Solution 2. Like in the first solution, we conclude that points C, P, (), D, F and the midpoint
M of AB lie on one circle w with diameter C'D, and M lies on ¢, the perpendicular bisector
of PQ.

Let BF and CM meet at G and let « = ZABF. Then, since E lies on ¢, and the
quadrilaterals FCBA and FCPQ are cyclic, we have

/CQP =/FPQ =/FCQ =/FCA=/FBA = .
Since points P, E, I are collinear, we have
LFEM = /ZFEQ + ZQEM =2a + (90° — a) = 90° + «v.
But ZFGM = 90° 4+ «, so FEGM is cyclic. Hence
/EGC =/FEFM = /PFM = /PCM.

Thus GE || BC. It follows that ZFAC = ZCBF = ZEGF, so FEGA is cyclic, too. Hence
LACB = /AFB = /ZAFG = 180° — ZAMG = 90°, that completes the proof.
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Al D — ' M 'B

Comment 1. The converse statement is true: if ZACB = 90° then points P, E and F are collinear.
This direction is easier to prove.

Comment 2. The statement of the problem remains true if the projection P of D onto BC lies outside
line segment BC'. The restriction that P lies inside line segment BC' is given to reduce case-sensitivity.
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Let ABCD be a convex quadrilateral. Suppose that P is a point in the interior of
ABCD such that

/PAD:/PBA:/DPA=1:2:3=/CBP:/BAP: /BPC.

The internal bisectors of angles ADP and PC'B meet at a point @) inside the triangle ABP.
Prove that AQ = BQ.
(Poland)

Solution 1. Let ¢ = ZPAD and v = ZCBP; then we have /PBA =2p, ZDPA = 3,
/BAP = 2¢ and ZBPC = 3. Let X be the point on segment AD with ZXPA = ¢. Then

/PXD=/PAX + /XPA=2p=/DPA—-/XPA=/DPX.

It follows that triangle DPX is isosceles with DX = DP and therefore the internal angle
bisector of ZADP coincides with the perpendicular bisector of X P. Similarly, if Y is a point
on BC such that ZBPY = 1, then the internal angle bisector of ZPCB coincides with the
perpendicular bisector of PY. Hence, we have to prove that the perpendicular bisectors of X P,
PY, and AB are concurrent.

A% B

Notice that
/AXP =180°— ZPXD = 180° — 2¢p = 180° — ZPBA.

Hence the quadrilateral AX PB is cyclic; in other words, X lies on the circumcircle of trian-
gle APB. Similarly, Y lies on the circumcircle of triangle APB. It follows that the perpen-
dicular bisectors of X P, PY, and AB all pass through the center of circle (ABY PX). This
finishes the proof.

Comment. Introduction of points X and Y seems to be the key step in the solution above. Note that
the same point X could be introduced in different ways, e.g., as the point on the ray C'P beyond P
such that ZPBX = ¢, or as a point where the circle (APB) meets again AB. Different definitions of
X could lead to different versions of the further solution.

Solution 2. We define the angles ¢ = ZPAD, ¢ = ZCBP and use ZPBA =2p, /DPA =
3p, ZBAP = 2¢ and /BPC = 31 again. Let O be the circumcenter of AAPB.

Notice that ZADP = 180° — ZPAD — /DPA = 180° — 4¢p, which, in particular, means
that 4¢ < 180°. Further, ZPOA =2/ PBA = 4¢ = 180° — ZAD P, therefore the quadrilateral
ADPO is cyclic. By AO = OP, it follows that ZADO = ZODP. Thus DO is the internal
bisector of ZADP. Similarly, CO is the internal bisector of ZPCB.
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Finally, O lies on the perpendicular bisector of AB as it is the circumcenter of AAPB.
Therefore the three given lines in the problem statement concur at point O.
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Let ABCD be a convex quadrilateral with ZABC > 90°, ZCDA > 90°, and
/DAB = /ZBCD. Denote by E and F' the reflections of A in lines BC' and C'D, respectively.
Suppose that the segments AE and AF meet the line BD at K and L, respectively. Prove that
the circumcircles of triangles BEK and DF'L are tangent to each other.

(Slovakia)

Solution 1. Denote by A’ the reflection of A in BD. We will show that that the quadrilaterals
A'BKE and A'DLF are cyclic, and their circumcircles are tangent to each other at point A’.

From the symmetry about line BC' we have / BEK = /BAK, while from the symmetry in
BD we have /BAK = /BA'K. Hence Z/BEK = /BA'K, which implies that the quadrilateral
A'BKFE is cyclic. Similarly, the quadrilateral A’DLF is also cyclic.

For showing that circles A/BKFE and A’DLF are tangent it suffices to prove that
LAKB+ /A'LD = /BA'D.
Indeed, by AK | BC, AL 1 C'D, and again the symmetry in BD we have
LAKB+ /A'LD =180° — ZKA'L =180° — /KAL = /BCD = /BAD = /BA'D,
as required.

Comment 1. The key to the solution above is introducing the point A’; then the angle calculations
can be done in many different ways.

Solution 2. Note that /K AL = 180° — ZBCD, since AK and AL are perpendicular to BC'
and C'D, respectively. Reflect both circles (BEK) and (DFL) in BD. Since ZKEB = ZKAB
and ZDFL = /DAL, the images are the circles (K AB) and (LAD), respectively; so they meet
at A. We need to prove that those two reflections are tangent at A.

For this purpose, we observe that

LAKB + ZALD =180° — LKAL = Z/BCD = /BAD.

Thus, there exists a ray AP inside angle ZBAD such that /BAP = ZAKB and ZDAP =
/ZDLA. Hence the line AP is a common tangent to the circles (K AB) and (LAD), as desired.

Comment 2. The statement of the problem remains true for a more general configuration, e.g., if
line BD intersect the extension of segment AFE instead of the segment itself, etc. The corresponding
restrictions in the statement are given to reduce case sensitivity.
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G4. In the plane, there are n > 6 pairwise disjoint disks Dy, Ds, ..., D, with radii
Ry >Ry >...>2 R,. Forevery i =1,2,...,n, a point P; is chosen in disk D;. Let O be an
arbitrary point in the plane. Prove that

OP,+0OP,+...+0P,>Rs+ R:+ ...+ R,.

(A disk is assumed to contain its boundary.)

(Iran)

Solution. We will make use of the following lemma.

Lemma. Let Dy, ..., Dg be disjoint disks in the plane with radii Ry, ..., Rg. Let P; be a point
in D;, and let O be an arbitrary point. Then there exist indices ¢ and j such that OF;, > R;.

Proof. Let O; be the center of D;. Consider six rays OOy, ..., OO¢ (if O = O;, then the ray
OO; may be assumed to have an arbitrary direction). These rays partition the plane into six
angles (one of which may be non-convex) whose measures sum up to 360°; hence one of the
angles, say Z£0;00;, has measure at most 60°. Then O;0; cannot be the unique largest side
in (possibly degenerate) triangle OO,0;, so, without loss of generality, 0OO; = 0,0; > R; + R;.
Therefore, OP, > OO; — R; = (R; + R;) — R; = R;, as desired. O

Now we prove the required inequality by induction on n > 5. The base case n = 5 is trivial.
For the inductive step, apply the Lemma to the six largest disks, in order to find indices 7 and j
such that 1 <7,5 <6 and OF, > R; > Rs. Removing D; from the configuration and applying

the inductive hypothesis, we get
Z OP, > 2 Ry.

k#1 =7

Adding up this inequality with OP; > Rg we establish the inductive step.

Comment 1. It is irrelevant to the problem whether the disks contain their boundaries or not. This
condition is included for clarity reasons only. The problem statement remains true, and the solution
works verbatim, if the disks are assumed to have disjoint interiors.

Comment 2. There are several variations of the above solution. In particular, while performing
the inductive step, one may remove the disk with the largest value of OF; and apply the inductive
hypothesis to the remaining disks (the Lemma should still be applied to the six largest disks).

Comment 3. While proving the Lemma, one may reduce it to a particular case when the disks are
congruent, as follows: Choose the smallest radius r of the disks in the Lemma statement, and then
replace, for each i, the i*" disk with its homothetic copy, using the homothety centered at P; with
ratio r/R;.

This argument shows that the Lemma is tightly connected to a circle packing problem, see, e.g.,
https://en.wikipedia.org/wiki/Circle_packing_in_a_circle. The known results on that prob-
lem provide versions of the Lemma for different numbers of disks, which lead to different inequalities
of the same kind. E.g., for 4 disks the best possible estimate in the Lemma is OF; > (\/5 — 1)R;,
while for 13 disks it has the form OP; > \/gRj. Arguing as in the above solution, one obtains the

inequalities
n

Zopiz(\/é—nifaj and ioa>\/5i R;.
j=4

i=1 i=1 j=13

However, there are some harder arguments which allow to improve these inequalities, meaning that
the R; with large indices may be taken with much greater factors.


https://en.wikipedia.org/wiki/Circle_packing_in_a_circle

54 Saint-Petersburg — Russia, 18th—28th September 2020

Let ABCD be a cyclic quadrilateral with no two sides parallel. Let K, L, M, and N
be points lying on sides AB, BC', C'D, and DA, respectively, such that K LM N is a rhombus
with KL || AC and LM || BD. Let w;, we, ws, and wy be the incircles of triangles ANK,
BKL, CLM, and DM N, respectively. Prove that the internal common tangents to w; and ws
and the internal common tangents to w, and w, are concurrent.

(Poland)

Solution 1. Let I; be the center of w;, and let r; be its radius for i = 1,2, 3,4. Denote by T}
and Tj5 the points of tangency of w; and w3 with NK and LM, respectively. Suppose that the
internal common tangents to w; and ws meet at point S, which is the center of homothety h

e
with negative ratio (namely, with ratio ——3) mapping w; to ws. This homothety takes 77 to Tj
r

(since the tangents to wy and ws at T3 to 1T3 are parallel), hence S is a point on the segment
TiT5 with T1S : ST5 = ry : rs.

Construct segments 5153 || KL and S5S; || LM through S with S; € NK, Sy € KL,
Sz € LM, and Sy € M N. Note that h takes S; to S3, hence I1S] || 1353, and 15 : SS3 = ry : 13.
We will prove that S,S5 : S5, = ry : 4 or, equivalently, K.S; : SiN = ry : r4. This will yield
the problem statement; indeed, applying similar arguments to the intersection point S’ of the
internal common tangents to wy and wy, we see that S’ satisfies similar relations, and there is
a unique point inside K LM N satisfying them. Therefore, S’ = S.

Further, denote by I, Ig, I, Ip and ra, rg, rc, rp the incenters and inradii of trian-
gles DAB, ABC, BCD, and CDA, respectively. One can shift triangle CLM by LK to glue
it with triangle AK N into a quadrilateral AKC’N similar to ABC' D. In particular, this shows
that 71 : r3 = ra : ro; similarly, ro : 74 = rg : rp. Moreover, the same shift takes S3 to S7, and
it also takes I3 to the incenter I} of triangle KC'N. Since IS || I35, the points Iy, Sy, I} are
collinear. Thus, in order to complete the solution, it suffices to apply the following Lemma to
quadrilateral AKC'N.

Lemma 1. Let ABCD be a cyclic quadrilateral, and define 14, I, rg, and rp as above. Let
I,Ic meet BD at X; then BX : XD =rg :rp.
Proof. Consider an inversion centered at X; the images under that inversion will be denoted by
primes, e.g., A’ is the image of A.

By properties of inversion, we have

LILID = /XI\D' = /XDI, = /BDA/2 = /BCA/2 = /ACIp.

We obtain £Z1I.D" = ZC Al likewise; therefore, A I, D' ~ AACIg. In the same manner,
we get AILIYB' ~ AACIp, hence the quadrilaterals I, B'Iy D" and AIpClp are also similar.
But the diagonals AC and Iglp of quadrilateral AI,C'Ig meet at a point Y such that IgY :
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YIp = rp : rp. By similarity, we get D'X : B’X = rg : rp and hence BX : XD = D'X :
B'X =rg:rp. O

Comment 1. The solution above shows that the problem statement holds also for any parallel-
ogram KLMN whose sides are parallel to the diagonals of ABCD, as no property specific for a
rhombus has been used. This solution works equally well when two sides of quadrilateral ABCD are
parallel.

Comment 2. The problem may be reduced to Lemma 1 by using different tools, e.g., by using mass
point geometry, linear motion of K, L, M, and N, etc.
Lemma 1 itself also can be proved in different ways. We present below one alternative proof.

Proof. In the circumcircle of ABCD, let K', L'. M’, and N’ be the midpoints of arcs AB, BC,
CD, and DA containing no other vertices of ABCD, respectively. Thus, K’ = CIg n DIy, etc. In
the computations below, we denote by [P] the area of a polygon P. We use similarities ATy BK' ~
AIAZDN', ANIgK'L' ~ ANIgAC, etc., as well as congruences AIgK'L'’ = ABK'L' and AIpM'N' =
ADM'N’ (e.g., the first congruence holds because K'L’ is a common internal bisector of angles BK'Ip
and BL'Ip).

We have

BX [IaBIg) BIy Blgo-sinlaBlg BIsy Blc sinN'BM'

DX — [IaDIg]  DIs-DIc-sinlgDIz DIy DIc sinK'DL
_ BK' BL' sinN'DM'  BK'-BL -sinK'BL'  sin®> N'DM’

DN’ DM’ sinK'BL’ DN’ -DM -sin N'NDM' sin2 K'BL/
[K'BL] N'M”  [K'IsL]- 4%  [AIsC] rp

~ [M'DN] K'L® T [M'IpN'] - A% T [AIRCT T rp

as required. O

Solution 2. This solution is based on the following general Lemma.

Lemma 2. Let E and F be distinct points, and let w;, i = 1,2,3,4, be circles lying in
the same halfplane with respect to FF. For distinct indices i,j € {1,2, 3,4}, denote by O;;
(respectively, O;;) the center of homothety with positive (respectively, negative) ratio taking
w; to wj. Suppose that E = 075 = O3, and F = O35 = O};. Then Op; = O3,.

Proof. Applying Monge’s theorem to triples of circles wy, ws, wy and wy, w3, wy, we get that both
points O, and Oj; lie on line FOj,. Notice that this line is distinct from EF. Similarly we
obtain that both points O, and Oq; lie on F'Os,. Since the lines EO;, and F'Oy, are distinct,
both points coincide with the meeting point of those lines. O

E
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Turning back to the problem, let AB intersect CD at E and let BC' intersect DA at F.
Assume, without loss of generality, that B lies on segments AE and C'F'. We will show that the
points F and F', and the circles w; satisfy the conditions of Lemma 2, so the problem statement
follows. In the sequel, we use the notation of Oii; from the statement of Lemma 2, applied to
circles wy, wo, w3, and wy.

Using the relations AECA ~ AEBD, KN || BD, and M N || AC. we get

AN AN AD KN AC AC AE
ND AD ND BD NM BD ED’

Therefore, by the angle bisector theorem, point N lies on the internal angle bisector of ZAED.
We prove similarly that L also lies on that bisector, and that the points K and M lie on the
internal angle bisector of ZAFB.

Since KLMN is a rhombus, points K and M are symmetric in line FLN. Hence, the
convex quadrilateral determined by the lines FK, EM, KL, and ML is a kite, and therefore it
has an incircle wy. Applying Monge’s theorem to wy, ws, and w3, we get that O lies on K M.
On the other hand, O3 lies on BC, as BC' is an external common tangent to wy and ws. It
follows that F' = OF;. Similarly, E = Of, = OF,, and F = Of,.

Comment 3. The reduction to Lemma 2 and the proof of Lemma 2 can be performed with the use of
different tools, e.g., by means of Menelaus theorem, by projecting harmonic quadruples, by applying
Monge’s theorem in some other ways, etc.
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Let I and I4 be the incenter and the A-excenter of an acute-angled triangle ABC
with AB < AC. Let the incircle meet BC at D. The line AD meets B4, and CI4 at E
and F', respectively. Prove that the circumcircles of triangles AID and I4EF are tangent to
each other.

(Slovakia)

Solution 1. Let %(p, q) denote the directed angle between lines p and q.

The points B, C', I, and [4 lie on the circle I' with diameter I74. Let w and €2 denote the
circles (I4EF) and (AID), respectively. Let T' be the second intersection point of w and T'.
Then T is the Miquel point of the complete quadrilateral formed by the lines BC', Bl 4, Cl4,
and DEF, so T also lies on circle (BDE) (as well as on circle (CDF')). We claim that 7" is a
desired tangency point of w and €.

In order to show that T lies on €2, use cyclic quadrilaterals BDET and BII,T to write

%(DT,DA) = (DT, DE) = %(BT, BE) = %(BT, BI4) = ¥(IT, I1,) = ¥(IT, IA).

To show that w and € are tangent at 7', let ¢ be the tangent to w at 7', so that x(T'14, () =
X(E14, ET). Using circles (BDET) and (BIC1,), we get

x(Ely, ET) = x(EB, ET) = (DB, DT).

Therefore,
X(TI,0) =90° + x(T14,¢) =90° + x(DB,DT) = (DI, DT),

which shows that ¢ is tangent to 2 at T
Solution 2. We use the notation of circles I', w, and €2 as in the previous solution.

Let L be the point opposite to I in circle 2. Then LIAL = ZIDL = 90°, which means
that L is the foot of the external bisector of Z A in triangle ABC'. Let LI cross I' again at M.
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Let T be the foot of the perpendicular from I onto I4L. Then T is the second intersection
point of I' and I". We will show that 7" is the desired tangency point.

First, we show that T lies on circle w. Notice that
X(LT,LM) = x(AT,AI) and <x(MT,ML)=x<(MT,MI)=x(IsT,141),

which shows that triangles TML and TI4A are similar and equioriented. So there exists a
rotational homothety 7 mapping TM L to T14A.
Since x(ML,LD) = x(AI, AD), we get 7(BC) = AD. Next, since

$(MB,ML) = ¥(MB,MI) = x(InB, I4I) = x(I4E, I, A),

we get 7(B) = E. Similarly, 7(C') = F'. Since the points M, B, C, and T are concyclic, so are
their 7-images, which means that 7" lies on w = 7(I").

A

Finally, since 7(L) = A and 7(B) = E, triangles AT'L and ET B are similar so that
X(AT, AL) = ¥(ET, EB) = x(El, ET).

This means that the tangents to {2 and w at T" make the same angle with the line I4T'L, so the
circles are indeed tangent at 7.

Comment. In both solutions above, a crucial step is a guess that the desired tangency point lies on I'.
There are several ways to recognize this helpful property.

E.g. one may perform some angle chasing to see that the tangents to €2 at L and to w at I4 are
parallel (and the circles lie on different sides of the tangents). This yields that, under the assumption
that the circles are tangent externally, the tangency point must lie on I4L. Since IL is a diameter
in €, this, in turn, implies that T is the projection of I onto I4L.

Another way to see the same fact is to perform a homothety centered at A and mapping I to I4
(and D to some point D). The image Q' of € is tangent to w at I 4, because ZBIjA+/CI4D" = 180°.
This yields that the tangents to 2 at I and to w at I4 are parallel.

There are other ways to describe the tangency point. The next solution presents one of them.
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Solution 3. We also use the notation of circles w, and €2 from the previous solutions.

Perform an inversion centered at D. The images of the points will be denoted by primes,
e.g., A’ is the image of A.

For convenience, we use the notation /BID = 3, ZCID = ~, and a = 180° —  — v =
90° — ZBAI. We start with computing angles appearing after inversion. We get

/DB'I' =03, /DC'I'" =+, andhence /ZB'I'C' = q;
/E'IWF =/E'T\D— /F'I''\D = /I,ED — ZI,FD = /EI,F =180° — a.
Next, we have
/DBA LE'AB
5
which yields that triangle A’B’E’ is isosceles with A’B’ = A’E’. Similarly, A'F' = A'C".
Finally, we get

/A'E'B =/DFE'B =/DBE =3 =90°—

LABTI'=/I'BD—-/ABD=p—-/BAD =3—(90°—a) + ZLIAD
=/ICD + LIAD = £C'I'D + LA'I'D = £C'T' A';
similarly, ZA'C'l' = ZA'I'B’, so that triangles A’B'I’ and A'I'C’ are similar. Therefore,
A/]/Z — A/B/ . A,C/.
Recall that we need to prove the tangency of line A'I’ = Q' with circle (E'F'I}) = w'. A
desired tangency point 7" must satisfy AT = A’E’ - A'F’; the relations obtained above yield
AIE/ . A/Fl _ A/Bl i A/C, _ AIIIQ

so that 7" should be symmetric to I’ with respect to A’.
Thus, let us define a point T” as the reflection of I’ in A’, and show that 7" lies on circle 2';
the equalities above will then imply that A’T” is tangent to ', as desired.

N\ A

o=

c o

T/
F W A

The property that triangles B’A’I’ and I’ A’C” are similar means that quadrilateral B'I'C"T’
is harmonic. Indeed, let C* be the reflection of C’ in the perpendicular bisector of I'T”; then
C* lies on B'A’ by LB'A'l' = LA'I'C' = ZT'I'C*, and then C* lies on circle (I'B'T") since
A'B' - AC* = AB' - AC" = A'I? = A'I" - A'T'. Therefore, C’ also lies on that circle (and
the circle is (B'I'C") = I"). Moreover, B’C* is a median in triangle B'I'T’, so B'C" is its
symmedian, which establishes harmonicity.

Now we have ZA'B'T" = /I'B'C' = g = ZA'B'E’; which shows that E’ lies on B'T".
Similarly, F” lies on C'T". Hence, ZE'T'F' = /ZB'I'C" = 180° — LE'I,F’, which establishes
T e W'
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Comment 2. The solution above could be finished without use of harmonicity. E.g., one may notice
that both triangles A’T"F’" and A’ E'T" are similar to triangle B'I’.J, where .J is the point symmetric to I’
in the perpendicular bisector of B'C’; indeed, we have /T'A'E' =~ — 3 = ZI'B’'J’ and g,lf]/, = g:f: =

BA = AL This also allows to compute ZE'T'F' = ZE'T'A' — LF'T'A' = LZI'JB' — LJI'B' = a.

Comment 3. Here we list several properties of the configuration in the problem, which can be derived
from the solutions above.

The quadrilateral IBT'C (as well as I’B'T’C") is harmonic. Hence, line IT contains the meeting
point of tangents to I' at B and C, i.e., the midpoint N of arc BAC' in the circumcircle of AABC.
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Let P be a point on the circumcircle of an acute-angled triangle ABC'. Let D,
E, and F be the reflections of P in the midlines of triangle ABC parallel to BC', C'A, and AB,
respectively. Denote by w4, wg, and we the circumcircles of triangles ADP, BEP, and CFP,
respectively. Denote by w the circumcircle of the triangle formed by the perpendicular bisectors
of segments AD, BE and CF.
Show that wy, wp, we, and w have a common point.
(Denmark)

Solution. Let AA,, BBy, and C'C] be the altitudes in triangle ABC', and let m 4, mg, and m¢
be the midlines parallel to BC', C'A, and AB, respectively. We always denote by x(p,q) the
directed angle from a line p to a line ¢, taken modulo 180°.

Step 1: Clircles wa, wg, and we share a common point Q) different from P.

Notice that m 4 is the perpendicular bisector of PD, so w4 is symmetric with respect to m 4.
Since A and A; are also symmetric to each other in m4, the point A; lies on w,. Similarly, B;
and Cf lie on wp and w¢, respectively.

Let H be the orthocenter of AABC. Quadrilaterals ABA;B; and BC'B;(Cy are cyclic, so
AH-HA, = BH - HB; = CH - HC;. This means that H lies on pairwise radical axes of wy,
wg, and we. Point P also lies on those radical axes; hence the three circles have a common
radical axis £ = PH, and the second meeting point ) of ¢ with w4 is the second common point
of the three circles. Notice here that H lies inside all three circles, hence ) # P.

Step 2: Point Q) lies on w.

Let pa, pg, and pe denote the perpendicular bisectors of AD, BE, and C'F, respectively;
denote by A the triangle formed by those perpendicular bisectors. By Simson’s theorem, in
order to show that @ lies on the circumcircle w of A, it suffices to prove that the projections
of ) onto the sidelines p4, pg, and pc are collinear. Alternatively, but equivalently, it suffices
to prove that the reflections @) 4, @, and Q¢ of ) in those lines, respectively, are collinear. In
fact, we will show that four points P, Q 4, @5, and Q¢ are collinear.

Since p4 is the common perpendicular bisector of AD and QQ 4, the point Q4 lies on wy,
and, moreover, <(DA, DQ4) = ¥£(AQ, AD). Therefore,

$(PA,PQu) = (DA, DQ4) = ¥(AQ, AD) = x(PQ, PD) = ¥(PQ, BC) + 90°.
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Similarly, we get x(PB, PQp) = <(PQ,CA) + 90°. Therefore,

$(PQ4, PQg) = ¥(PQ4, PA) + ¥(PA, PB) + x(PB, PQg)
— x(BC, PQ) + 90° + ¥(CA,CB) + ¥(PQ, CA) + 90° = 0,

which shows that P, 04, and () are collinear. Similarly, Q)¢ also lies on PQ) 4.

Comment 1. There are several variations of Step 2. In particular, let O4, Op, and O¢ denote
the centers of wya, wp, and we, respectively; they lie on pa, pp, and po, respectively. Moreover,
all those centers lie on the perpendicular bisector p of PQ. Now one can show that <(QO4,pa) =
¥(QOp,pp) = ¥(QO¢,pc), and then finish by applying generalized Simson’s theorem, Alternatively,
but equivalently, those relations show that () is the Miquel point of the lines pa, pg, pc, and p.

To establish %(QO04,pa) = ¥(QO¢, pc), notice that it is equivalent to ¥(QO4, Q0¢) = X(pa, pc)
which may be obtained, e.g., as follows:

#(Q04,Q0¢) = x(Q04,p) + ¥(p, Q0¢) = ¥(AQ, AP) + x(CP,CQ)
= X(AQ,CQ) + £x(CP,AP) = x(AQ, PQ) + <(PQ,CQ) + x(CB, AB)
= x(AD,AA)) + x(CC1,CF) 4+ ¥(AA,,CCy) = £x(AD,CF) = <(pa, pc).

Comment 2. The inversion at H with (negative) power —AH-H A; maps P to @, and the circumcircle
of ANABC to its Euler circle. Therefore, @ lies on that Euler circle.
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Let " and I be the circumcircle and the incenter of an acute-angled triangle ABC.
Two circles wp and we passing through B and C| respectively, are tangent at I. Let wp meet
the shorter arc AB of I' and segment AB again at P and M, respectively. Similarly, let we
meet the shorter arc AC of I" and segment AC' again at ) and N, respectively. The rays PM
and QN meet at X, and the tangents to wp and we at B and C, respectively, meet at Y.

Prove that the points A, X, and Y are collinear.
(Netherlands)

Solution 1. Let AI, BI, and CI meet I' again at D, E, and F, respectively. Let ¢ be the
common tangent to wp and we at I. We always denote by «(p, ¢q) the directed angle from a
line p to a line ¢, taken modulo 180°.

Step 1: We show that'Y lies on I

Recall that any chord of a circle makes complementary directed angles with the tangents to the
circle at its endpoints. Hence,

X(BY,BI) + <(CI,CY) =x(IB,¢) + (¢, IC) = x(IB, 1C).
Therefore,

x(BY,BA) + x(CA,CY) = x(BI, BA) + x(BY, BI) + x(CI,CY) + x(CA,CI)
= x(BC,BI)+ x(IB,IC) + x(CI,CB) =0,

which yields Y e I'.

WB

we

Step 2: We show that X = n EF.

Let X, = ¢ n EF. To prove our claim, it suffices to show that X, lies on both PM and QN;
this will yield X, = X. Due to symmetry, it suffices to show X, € QN.
Notice that

$(IX,,1Q) = ¥(CI,CQ) = x(CF,CQ) = x(EF, EQ) = ¥(EX,, EQ);
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therefore, the points X, I, @, and E are concyclic (if Q = E, then the direction of FQ is
supposed to be the direction of a tangent to I at @); in this case, the equality means that the
circle (X,1Q) is tangent to I' at @)). Then we have

$(QX,,QI) = ¥x(EX,,EI) = x(EF, EB) = ¥(CA,CF) = x(CN,CI) = x(QN, QI),

which shows that X, € QN.

Step 3: We finally show that A, X, and Y are collinear.

Recall that I is the orthocenter of triangle DEF', and A is symmetric to I with respect to E'F.
Therefore,

X(AX,AF) = x(IE,IX) = x(BI,l) = x(BY,BI) = ¥x(BY,BE) = x(AY, AE),
which yields the desired collinearity.

Comment 1. Step 2 in the above solution seems to be crucial. After it has been performed (even
without Step 1), there are different ways of finishing the solution.

E.g., one may involve the notion of isogonal conjugacy. Let X7 and Y; be isogonal conjugates of X
and Y, respectively, with respect to triangle ABC. Since XA = X, triangle AIX is isosceles, and
hence the lines AX and X1 form equal angles with the internal bisector Al of ZBAC. This means
that AXy || X1, or AX; || 2.

On the other hand, the lines BY and ¢ form equal angles with BI, so that BY; || ¢. Similarly,
CY7 || €. This means that Y7 is an ideal point, and AY; || £ as well. Therefore, points A, X;, and Y;
are collinear, and hence A, X, and Y are such.

Solution 2. Perform an inversion centered at I; the images of the points are denoted by
primes, e.g., A’ is the image of A.

On the inverted figure, I and [ are the orthocenter and the circumcircle of triangle A’B'C”,
respectively. The points P’ and @’ lie on I” such that B'P’ || C'Q’ (since B'P’ = w); and
C'Q" = wg). The points M’ and N’ are the second intersections of lines B'P" and C'Q)" with
the circumcircles v and ¢ of triangles A’ B’ and A’IC’, respectively. Notice here that ¢ is
obtained from g by the translation at W; the same translation maps line B'P’ to C'Q)’, and
hence M’ to N'. In other words, B’M'N'C" is a parallelogram, and P’'Q)’ partitions it into two
isosceles trapezoids.

Point X’ is the second intersection point of circles (IP'M’) and (I/Q'N’) that is — the
reflection of I in their line of centers. But the centers lie on the common perpendicular bisector p
of P’M’" and Q" N’, so p is that line of centers. Hence, I X’ || B’P’, as both lines are perpendicular
to p.

Finally, the point Y satisfies x(BY, BI) = <(PB, PI) and x(CY,CI) = x(QC, QI), which
yields <(Y'B',Y'I) = x(B'P',B'I) and x(Y'C",Y']) = x(C'Q’,C'I). Therefore,

$(Y'B.Y'C') = x(B'P,BI)+ x(C'I,C'Q") = x(C'I,B'I) = x(A'B', A'C"),

which shows that Y’ e I,

In congruent circles IV and g, the chords A’P’ and A’M’ subtend the same angle Z A’B'P’;
therefore, A’P" = A’M’, and hence A’ € p. This yields A’X’ = A'I, and hence x([A",IX') =
(X', X' AY).

Finally, we have
xY'LY'A)=x(Y'LY'B) + x(Y'B',Y'A)
= X(B'I,BP)+ x(IAIB) = x(IA,B'P") = x(IA,IX") = (X', X'A"),

which yields that the points A’, X', Y’ and I are concyclic. This means exactly that A, X,
and Y are collinear.
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Comment 2. An inversion at I may also help in establishing Step 2 in Solution 1. Indeed, rela-
tion A’X’ = A'I yields XA = X1, so that X € EF. On the other hand, IX' || B'P’ yields IX || ¢,
ie, X el
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G9. Prove that there exists a positive constant ¢ such that the following statement is
true:

Assume that n is an integer with n > 2, and let S be a set of n points in the plane such
that the distance between any two distinct points in S is at least 1. Then there is a line ¢
separating S such that the distance from any point of S to £ is at least cn =13,

(A line ¢ separates a point set S if some segment joining two points in S crosses /.)

(Taiwan)

Solution. We prove that the desired statement is true with ¢ = %. Set § = %n*1/3. For any
line ¢ and any point X, let X, denote the projection of X to ¢; a similar notation applies to
sets of points.

Suppose that, for some line ¢, the set &, contains two adjacent points X and Y with
XY = 2d. Then the line perpendicular to ¢ and passing through the midpoint of segment XY
separates S, and all points in S are at least d apart from ¢. Thus, if d > ¢, then a desired
line has been found. For the sake of contradiction, we assume that no such points exist, in any
projection.

Choose two points A and B in S with the maximal distance M = AB (i.e., AB is a diameter
of §); by the problem condition, M > 1. Denote by ¢ the line AB. The set S is contained
in the intersection of two disks D4 and Dpg of radius M centered at A and B, respectively.
Hence, the projection Sy is contained in the segment AB. Moreover, the points in S, divide
that segment into at most n — 1 parts, each of length less than 29. Therefore,

M <n-26. (1)

a

Choose a point H on segment AB with AH = % Let P be a strip between the lines a and h
perpendicular to AB and passing through A and H, respectively; we assume that P contains its
boundary, which consists of lines a and h. Set T = P nS and let t = |T|. By our assumption,
segment AH contains at least [ : (26)| points of S, which yields

1
t> o (2)

Notice that T is contained in Q = P n Dpg. The set @) is a circular segment, and its
projection @, is a line segment of length

1\ 2
e (3 1) <avir
On the other hand, for any two points X,Y € T, we have XY > 1 and X,Y, < %, so X,Y, =
VXY?2 = X YP > ? To summarize, ¢t points constituting 7, lie on the segment of length less

than 2v/ M, and are at least ? apart from each other. This yields 2v/M > (¢t — 1)?, or

t<1+%<4m, (3)
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as M > 1.
Combining the estimates (1), (2), and (3), we finally obtain

1
5 S t <4VM < 4v2ns, or 512né° > 1,

which does not hold for the chosen value of §.

Comment 1. As the proposer mentions, the exponent —1/3 in the problem statement is optimal. In
fact, for any n > 2, there is a configuration S of n points in the plane such that any two points in &
are at least 1 apart, but every line £ separating S is at most ¢/n~'/3logn apart from some point in S;
here ¢ is some absolute constant.

The original proposal suggested to prove the estimate of the form en~/2. That version admits
much easier solutions. E.g., setting § = %n_lp and applying (1), we see that S is contained in a
disk D of radius %nl/Q. On the other hand, for each point X of S, let Dx be the disk of radius %
centered at X all these disks have disjoint interiors and lie within the disk concentric to D, of radius

1,12 1 _1,.1/2 :
16N 2 4 5 <3n /2. Comparing the areas, we get

which is a contradiction.

The Problem Selection Committee decided to choose a harder version for the Shortlist.

Comment 2. In this comment, we discuss some versions of the solution above, which avoid concen-
trating on the diameter of §. We start with introducing some terminology suitable for those versions.

Put § = en~'/3 for a certain sufficiently small positive constant ¢. For the sake of contradiction,
suppose that, for some set S satisfying the conditions in the problem statement, there is no separating
line which is at least § apart from each point of S.

Let C be the convex hull of S. A line is separating if and only if it meets C' (we assume that a line
passing through a point of S is always separating). Consider a strip between two parallel separating
lines a and a’ which are, say, % apart from each other. Define a slice determined by the strip as the
intersection of & with the strip. The length of the slice is the diameter of the projection of the slice
to a.

In this terminology, the arguments used in the proofs of (2) and (3) show that for any slice 7 of

length L, we have
1

4
— < |T|<1+ —L. 4
GEIT<1 o ()

The key idea of the solution is to apply these estimates to a peel slice, where line a does not cross
the interior of C'. In the above solution, this idea was applied to one carefully chosen peel slice. Here,
we outline some different approach involving many of them. We always assume that n is sufficiently

large.

Consider a peel slice determined by lines a and a’, where a contains no interior points of C'. We
orient a so that C' lies to the left of a. Line a is called a supporting line of the slice, and the obtained
direction is the direction of the slice; notice that the direction determines uniquely the supporting line
and hence the slice. Fix some direction vg, and for each « € [0,27) denote by 7, the peel slice whose
direction is v rotated by a counterclockwise.

When speaking about the slice, we always assume that the figure is rotated so that its direction is
vertical from the bottom to the top; then the points in T get a natural order from the bottom to the
top. In particular, we may speak about the top half T(T) consisting of ||7|/2] topmost points in T,
and similarly about its bottom half B(T). By (4), each half contains at least 10 points when n is large.

Claim. Consider two angles «, 5 € [0,7/2] with § — «a = 40§ =: ¢. Then all common points of 7, and
Tp lie in T(7o) n B(73).
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Proof. By symmetry, it suffices to show that all those points lie in T(7,). Let a be the supporting
line of 7, and let £ be a line perpendicular to the direction of 7. Let Pi,..., Py list all points in 7,
numbered from the bottom to the top; by (4), we have k > %6‘1.

Introduce the Cartesian coordinates so that the (oriented) line a is the y-axis. Let P; be any point
in B(74). The difference of ordinates of Py and P; is at least @(/{? — i) > 1k, while their abscissas
differ by at most i. This easily yields that the projections of those points to £ are at least

Esin¢*1>i'205*1 >l

3 47 246 4 4

apart from each other, and P, is closer to the supporting line of 73 than F;, so that P; does not belong

to 7Tg. L]
Now, put «; = 4007, fori =0,1,..., [%5*1 . %J, and consider the slices 7,,. The Claim yields that

each point in § is contained in at most two such slices. Hence, the union U of those slices contains at

least
1 1 1 =« A

285 406 2 &2
points (for some constant \), and each point in U is at most % apart from the boundary of C.

It is not hard now to reach a contradiction with (1). E.g., for each point X € U, consider a closest
point f(X) on the boundary of C. Obviously, f(X)f(Y) > XY — % > %XY for all X,Y € U. This
yields that the perimeter of C is at least ud—2, for some constant u, and hence the diameter of S is of
the same order.

Alternatively, one may show that the projection of U to the line at the angle of 7/4 with vo has
diameter at least xd~2 for some constant /.
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Number Theory

Given a positive integer k, show that there exists a prime p such that one can choose
distinct integers a, as, ..., axr3 € {1,2,...,p — 1} such that p divides a;a;41a;12a;13 — i for all
1=1,2,...,k.

(South Africa)

Solution. First we choose distinct positive rational numbers rq, ..., 7,3 such that
TiTiv1Ti42743 = 7 fOI' 1 < 7 < ]{)

Letry = z, 79 = y, r3 = 2 be some distinct primes greater than k; the remaining terms satisfy
ry = m}m and r;,4 = ﬂfrl It follows that if r; are represented as irreducible fractions, the
numerators are divisible by xfori=1 (mod 4), by y fori =2 (mod 4), by z for i =3 (mod 4)
and by none for i = 0 (mod 4). Notice that r; < r;,4; thus the sequences 1 < r5 <719 < ...,
o <Tg<T10<...,Tr3<r7<ry<...T4<Trg<TrT1p <...areincreasing and have no common
terms, that is, all r; are distinct.

If each rz is represented by an irreducible fraction “, choose a prime p which divides neither
v, 1 <@ < k+ 1, nor vui(r; —rj) = vju; — vu; for 1 < j, and define a; by the congruence
a;v; = u; (mod p). Since ;7,417 42Ti43 = 1, We have

10 V410420543 = TiUTi 41041742V 4275 +3Vi43

= Uil 1 Uiy 2Uis3 = QU041 4104201204303 (mod p)

and therefore a;a;,1a;120;13 =1 (mod p) for 1 <7 < k.
If a; = a; (mod p), then uv; = a;v;v; = u;v; (mod p), a contradiction.

Comment. One can explicitly express residues b; = ajag - ... - a; (mod p) in terms of by, by, bs and
bo = 1:

birs=1i(t —4)(i —8) - ... (i — 4k + 4)b,,
where ¢ + 3 = 4k + r, 0 < r < 4. Then the numbers a; are found from the congruences b;_1a; = b;

(mod p), and choosing p so that a; are not congruent modulo p is done in a way very similar to the
above solution.
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N2. For each prime p, there is a kingdom of p-Landia consisting of p islands numbered
1, 2, ..., p. Two distinct islands numbered n and m are connected by a bridge if and only if
p divides (n? — m + 1)(m? — n + 1). The bridges may pass over each other, but cannot cross.
Prove that for infinitely many p there are two islands in p-Landia not connected by a chain of
bridges.

(Denmark)

Solution 1. We prove that for each prime p > 3 dividing a number of the form z? — z + 1
with integer x there are two unconnected islands in p-Landia.

For brevity’s sake, when a bridge connects the islands numbered m and n, we shall speak
simply that it connects m and n.

A bridge connects m and n if n =m? + 1 (mod p) or m=n?+1 (mod p). f m*> +1=n
(mod p), we draw an arrow starting at m on the bridge connecting m and n. Clearly only
one arrow starts at m if m? + 1 # m (mod p), and no arrows otherwise. The total number of
bridges does not exceed the total number of arrows.

Suppose 7> —x + 1 =0 (mod p). We may assume that 1 < z < p; then there is no arrow
starting at . Since (1 —z)? - (1—z)+1=2>—2+1, (p+1—-2)>+1=(p+1—2) (mod p),
and there is also no arrow starting at p+ 1 — 2. If x = p+ 1 — x, that is, z = ’%1, then
4(z*> —z + 1) = p* + 3 and therefore 22 — x + 1 is not divisible by p. Thus the islands z and
p + 1 — x are different, and no arrows start at either of them. It follows that the total number
of bridges in p-Landia does not exceed p — 2.

Let 1, 2, ..., p be the vertices of a graph G, where an edge connects m and n if and only if
there is a bridge between m and n. The number of vertices of G, is p and the number of edges
is less than p — 1. This means that the graph is not connected, which means that there are two
islands not connected by a chain of bridges.

It remains to prove that there are infinitely many primes p dividing 22—z +1 for some integer
x. Let p1, pa, ..., pr be any finite set of such primes. The number (p1py-...-pp)2—pip2-. .. pr+1
is greater than 1 and not divisible by any p;; therefore it has another prime divisor with the
required property.

Solution 2. One can show, by using only arithmetical methods, that for infinitely many p, the
kingdom of p-Ladia contains two islands connected to no other island, except for each other.

Let arrows between islands have the same meaning as in the previous solution. Suppose
that positive a < p satisfies the congruence 2> — z +1 =0 (mod p). We have seen in the first
solution that b = p+1—a satisfies it too, and b # a when p > 3. It follows that ab = a(1—a) = 1
(mod p). If an arrow goes from ¢ to a, then ¢ must satisfy the congruence t> + 1 =a =a? + 1
(mod p); the only such ¢ # a is p — a. Similarly, the only arrow going to b goes from p — b. If
one of the numbers p —a and p — b, say, p — a, is not at the end of any arrow, the pair a, p —a
is not connected with the rest of the islands. This is true if at least one of the congruences
22+ 1 = —a, 22 + 1 = —b has no solutions, that is, either —a — 1 or —b — 1 is a quadratic
non-residue modulo p.

Note that 2> —z + 1 =2? — (a + b)x + ab = (r — a)(z — b) (mod p). Substituting z = —1
we get (—1 —a)(—1 —b) = 3 (mod p). If 3 is a quadratic non-residue modulo p, so is one of
the numbers —1 — a and —1 — .

Thus it is enough to find infinitely many primes p > 3 dividing 22 — 2 + 1 for some integer
x and such that 3 is a quadratic non-residue modulo p.

If 22 — 2+ 1=0 (mod p) then (2 — 1)? = —3 (mod p), that is, —3 is a quadratic residue
modulo p, so 3 is a quadratic non-residue if and only if —1 is also a non-residue, in other words,

= —1 (mod 4).

Similarly to the first solution, let p;, ..., pp be primes congruent to —1 modulo 4 and

dividing numbers of the form 2? — 2 + 1. The number (2p; - ... - pp)? — 2p1 ... pp + 1 is
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not divisible by any p; and is congruent to —1 modulo 4, therefore, it has some prime divisor
p= —1 (mod 4) which has the required properties.
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IN3. Let n be an integer with n > 2. Does there exist a sequence (ay,...,a,) of positive
integers with not all terms being equal such that the arithmetic mean of every two terms is

equal to the geometric mean of some (one or more) terms in this sequence?
(Estonia)

Answer: No such sequence exists.

Solution 1. Suppose that aq,...,a, satisfy the required properties. Let d = ged(ay ..., ay,).

If d > 1 then replace the numbers ay,...,a, by %, ..., %; all arithmetic and all geometric
means will be divided by d, so we obtain another sequence satisfying the condition. Hence,
without loss of generality, we can assume that ged(ay ..., a,) = 1.

We show two numbers, a,, and a; such that their arithmetic mean, % is different from

the geometric mean of any (nonempty) subsequence of a; ..., a,. That proves that there cannot
exist such a sequence.

Choose the index m € {1,...,n} such that a,, = max(ai,...,a,). Note that a, > 2,
because ay, ..., a, are not all equal. Let p be a prime divisor of a,,.

Let k € {1,...,n} be an index such that a; = max{a; : p 1 a;}. Due to ged(a; ..., a,) = 1,
not all a; are divisible by p, so such a k exists. Note that a,, > a; because a,, = a, p | a,, and
p )( ay.

Let b = %; we will show that b cannot be the geometric mean of any subsequence
of ay,...,ay,.
Consider the geometric mean, g = /a;, - ... - a;, of an arbitrary subsequence of aq, ..., a,.
If none of a;,,...,a; is divisible by p, then they are not greater than ay, so
Ay, + G
g: tai1'---'ait<ak<mTk:b7

and therefore g # b.

Otherwise, if at least one of a;,, ..., a;, is divisible by p, then 2¢g = 2\¥/a;, - ... a;, is either
not an integer or is divisible by p, while 2b = a,, + a; is an integer not divisible by p, so g # b
again.

Solution 2. Like in the previous solution, we assume that the numbers ay, ..., a, have no
common divisor greater than 1. The arithmetic mean of any two numbers in the sequence is
half of an integer; on the other hand, it is a (some integer order) root of an integer. This
means each pair’s mean is an integer, so all terms in the sequence must be of the same parity;
hence they all are odd. Let d = min { ged(ai, aj): a; # aj}. By reordering the sequence we can
assume that ged(ap, as) = d, the sum a; + as is maximal among such pairs, and a; > as.

We will show that %3% cannot be the geometric mean of any subsequence of a; ..., a,.
Let a; = xd and ay; = yd where x,y are coprime, and suppose that there exist some
bi,....by € {ay,...,a,} whose geometric mean is “5%2. Let d; = ged(aq,b;) for i = 1,2,...¢

and let D = dyds - ... d;. Then

t t
Dl (5 - (1)

We claim that D | d. Consider an arbitrary prime divisor p of D. Let v,(x) denote the
exponent of p in the prime factorization of x. If p | xTer, then p { z,y, so p is coprime with
x; hence, v,(d;) < vp(ar) = vp(xd) = vp(d) for every 1 < i < t, therefore v,(D) = Y}, v,(d;) <
tvy(d) = v,(d"). Otherwise, if p is coprime to 3, we have v,(D) < v,(d") trivially. The claim
has been proved.
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Notice that d; = ged(b;, a1) = d for 1 < i < t: if b; # a; then this follows from the definition
of d; otherwise we have b; = a1, so d; = a; > d. Hence, D = d; -...-d; > d*, and the claim
forcesd, = ... =d; = d.

Finally, by 939 > gy there must be some by which is greater than a,. From a; > ay >
d = ged(aq, by) it follows that a; # by. Now the have a pair ay, b, such that ged(aq, by) = d but
ai + by > a1 + ao; that contradicts the choice of a; and as.

Comment. The original problem proposal contained a second question asking if there exists a non-

constant sequence (a1, ...,a,) of positive integers such that the geometric mean of every two terms is
equal the arithmetic mean of some terms.
For n > 3 such a sequence is (4,1,1,...,1). The case n = 2 can be done by the trivial estimates
a1 + ao

min(ay, az) < \/aras < < max(a, az).

2

The Problem Selection Committee found this variant less interesting and suggests using only the
first question.
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N4. For any odd prime p and any integer n, let dy(n) € {0,1,...,p — 1} denote the
remainder when n is divided by p. We say that (ag, a1, as, . ..) is a p-sequence, if ag is a positive
integer coprime to p, and a,11 = a, + dp(a,) for n = 0.

(a) Do there exist infinitely many primes p for which there exist p-sequences (ag, a1, as, . . .) and
bo, b1, ba, . ..) such that a, > b, for infinitely many n, and b, > a, for infinitely many n?

(
(b) Do there exist infinitely many primes p for which there exist p-sequences (ag, a1, as, . ..) and
(bo, b1, ba, .. .) such that ay < by, but a, > b, for all n > 17

(United Kingdom)

Answer: Yes, for both parts.

Solution. Fix some odd prime p, and let T' be the smallest positive integer such that p | 27 — 1;
in other words, T is the multiplicative order of 2 modulo p.

Consider any p-sequence (z,) = (zg, 1, T, ... ). Obviously, 2,41 = 2z, (mod p) and there-
fore z,, = 2"x¢ (mod p). This yields x,17 = z,, (mod p) and therefore d(z,r) = d(x,) for all
n = 0. It follows that the sum d(x,) + d(x,.1) + ... + d(zp17-1) does not depend on n and is
thus a function of zy (and p) only; we shall denote this sum by S,(z¢), and extend the func-
tion S,(+) to all (not necessarily positive) integers. Therefore, we have x, 1 = x,, + kS,(20)
for all positive integers n and k. Clearly, S,(x¢) = S,(2'x¢) for every integer ¢t = 0.

In both parts, we use the notation

T—1 T—1
S =8,(1) = > dp(2) and S, = S,(=1) = > dy(p—2).
1=0 1=0

(a) Let ¢ > 3 be a prime and p a prime divisor of 2¢ + 1 that is greater than 3. We will show
that p is suitable for part (a). Notice that 9127 + 1, so that such a p exists. Moreover, for any
two odd primes ¢ < r we have ged(27 + 1,27 + 1) = 28°4@") 1 1 = 3, thus there exist infinitely
many such primes p.

For the chosen p, we have T' = 2q. Since 2/ = —1 (mod p), we have S = 5. Now consider
the p-sequences (a,) and (b,) with ap = p+ 1 and by = p — 1; we claim that these sequences
satisfy the required conditions. We have ag > by and a; = p + 2 < by = 2p — 2. It follows then
that

Ak.2q = Qg + /{ZS; > by + kS;r = bk.Qq and Ag.2g+1 = A1 T kS;r < by + /{ZS; = bk.2q+1

for all kK =0,1,..., as desired.

(b) Let ¢ be an odd prime and p a prime divisor of 27 — 1; thus we have T' = ¢q. We will show
that p is suitable for part (b). Notice that the numbers of the form 29 — 1 are pairwise coprime
(since ged(2? — 1,27 — 1) = 28°d@") — 1 = 1 for any two distinct primes ¢ and r), thus there
exist infinitely many such primes p. Notice that d,(z) + d,(p — z) = p for all x with p { z, so
that the sum S + S = pq is odd, which yields S} = S,(1) # S,(=1) = S, .

Assume that (z,,) and (y,,) are two p-sequences with S,(zo) > S,(yo) but zo < yo. The first
condition yields that

qu-H" - qu-H" = (xr - yr) + M(Sp(xO) - Sp(yO)) = (xr - yr) + M

for all nonnegative integers M and every r = 0,1,...,¢ — 1. Thus, we have z, > y, for
every n = q + q - max{yr —x.or = 0,1,...,q — 1}. Now, since xy < ¥, there exists the
largest ng with z,, < y,,. In this case the p-sequences a, = x,_,, and b, = Y,_n, POSSESS
the desired property (notice here that =, # y, for all n > 0, as otherwise we would have

Sp(wo) = Sp(n) = Sp(Yn) = Sp(¥o0))-
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It remains to find p-sequences (z,) and (y,) satisfying the two conditions. Recall that
Sy # S, . Now, if S > S, then we can put rp = 1 and yo = p — 1. Otherwise, if S < S,
then we put xo =p—1and yo =p+ 1.
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Determine all functions f defined on the set of all positive integers and taking
non-negative integer values, satisfying the three conditions:

(i) f(n) # 0 for at least one n;
(17) f(xy) = f(x) + f(y) for every positive integers x and y;

(i73) there are infinitely many positive integers n such that f(k) = f(n — k) for all £ < n.
(Croatia)

Answer: The sought functions are those of the form f(n) = ¢- v,(n), where p is some prime, ¢
is a nonnegative integer, and 1,(n) denotes the exponent of p in the prime decomposition of n.

Solution 1. If a number n is a product of primes, n = pips - ... - pg, then

fn) = f(p1) + ...+ fpr),

in particular, f(1) =0 (since f(1) = f(1) + f(1)).

It is also clear that f(n) = 0 implies f(p) = 0 for all primes p dividing n.

Let us call positive integer n good if f(k) = f(n — k) for 0 < k < n. If n is good then each
its divisor d is also good; indeed, if n = dm then

f(k) = f(mk) = f(m) = f(n —mk) — f(m) = f(m(d = k)) = f(m) = f(d—F)

for 0 < k < d. Thus, good numbers are products of good primes.

It follows immediately from (i) that there exists a prime p such that f(p) # 0; let p be the
smallest such prime. Then f(r) = 0 for all r < p (since all prime divisors of r < p are less than
p). Now every good number n > p must be divisible by p. Indeed, if n = pk + r is a good
number, k > 0, 0 < r < p, then f(p) < f(pk) = f(n —pk) = f(r) = 0, a contradiction. Since
any divisor of a good number is also good, this means that if a divisor r of a good number is
not divisible by p, it is less than p. Thus all good numbers have the form r - p* with » < p. The
condition (iii) implies that k can be arbitrarily large, consequently all powers of p are good.

If ¢ # p is a prime, p?~! — 1 is divisible by ¢ and p?~! is good. Then f(q) < f(p?7!—1) =
f(1) = 0, that is, f(q) = 0.

Now we see that f(n) = v,(n) - ¢, where ¢ = f(p). The conditions (i) and (ii) for all such
functions with ¢ # 0 are obvious; the condition (iii) holds for all n = p™, since v, (p" —k) = v,(k)
when 0 < k& < p™.

Solution 2. We use the notion of a good number from the previous solution. As above, we
also denote by v,(n) the exponent of a prime p in the prime decomposition of n.

Say that a positive integer k is big if f(k) > 0. Let B be the set of big primes, and let
p1 < p2 < ...list the elements of B (this set might be either finite or infinite). By the problem
conditions, we have

f(n) = vai(n)f(pi); (1)

thus, the big numbers are those divisible by at least one big prime.
For a positive integer k, define its essence e(k) to be the largest product e of (not necessarily
different) big primes such that e | k. In other words,

e(m) = [ [ """

pi€B

This yields that k/e(k) is not big, so f(k) = f(e(k)) + f(k/e(k)) = f(e(k)).

Lemma. Assume that n is a good number. Then e(k) = e(n — k) for all k < n.
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Proof. Arguing indirectly, choose a minimal k£ for which the claim of the lemma is violated.
Clearly, k is big, as otherwise f(k) = f(n — k) = 0 and hence e(k) = e(n — k) = 1.

There are t = k/e(k) multiples of e(k) in each of the segments [1,k] and [n — k,n — 1].
On the other hand, there are t — 1 such multiples on |1,k — 1] — and, by minimality of k, on
[n —k + 1,n — 1] as well. This yields that n — k is a multiple of e(k). Therefore,

el = 70 = fn =) = ey + £ (5.

so the last summand vanishes, hence £75 has no big prime divisors, that is, e(n — k) = e(k).

This contradicts our choice. [

Back to the problem, assume that |B| > 2. Take any good number n > pips, and let
p¢ be the largest power of p; smaller than n, so that n < p¢*' < p¢p,. By the lemma,
e(n — pf) = e(p}) = p¢, which yields p¢ | n. Similarly, po | n, so that n > ppy. This

contradiction shows that |B| < 1, which by (1) yields that f is listed in the answer.

Solution 3. We have f([[p;") = > a.f(pi). Note that

fn=1)+f(n=2)+...+...f(n—k)= f(1)+...+ f(k)

forall k =1,2,...,n—1, since the difference LHS—RHS is just f((";l)) Assume that f(p) > 0.
If f(k) = f(n—k) for all k, it implies that (";1) is not divisible by p for all k =1,2,...,n—2.
It is well known that it implies n = a - p°, a < p. If there are two primes p,q such that
f(p) > 0, f(q) > 0, there exist only finitely many n which are equal both to a - p°*, a < p,
and b - ¢',b < ¢q. So there exists at most one such p, and therefore f(n) = C - v,(n) for some
constant C'.

Solution 4. We call a function f : N — Ny satisfying (ii) additive. We call a pair (f,n),

where f is an additive function and n € N, good, if for all £ < n it holds f(k) = f(n — k). For

an additive function f and a prime number p the number @ is denoted by g(f,p).
np
Let (f,n) be a good pair such that f(p) > 0 for at least two primes less than n. Let py be
the prime with maximal g(f, p) among all primes p < n. Let ag be the maximal exponent such

that pg® < n. Then f(k) < f(pg°) for all k < pg°. Indeed, if k = pi*...p¢m < pg°, then

fk) =arf(p) + ...+ anf(pm) = g(f,p1)arInpr + ... 4 g(f, D)t In @y
< g(f,po)aoInpy = f(pg°)-

Let n = bpy® + r, where 0 < r < pg°. Then f(r) = f(bpg°) = f(pg°). This contradiction shows
that pi°|n. Then n = p,™ ™)y , where n’ < py.
The functions fi(m) := f(po)vp,(m) and fo := f — f; are additive (obviously f(m) >
f(pgpo(m)) = f1(m), since pg”o(m) divides m). For k < n, v,(k) = v,(n — k). Hence the pair
(f2,n) is also good. Note that fa(pg) = 0.
Choose among all primes p < n the prime gy with maximal g(fo, p). As above we can prove

Vqq (n)

that n = ¢, 'n” with n” < qo. Since py # qo, we get a contradiction. Thus f(n) = f(p)-vp(n).
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IN6. For a positive integer n, let d(n) be the number of positive divisors of n, and let
©(n) be the number of positive integers not exceeding n which are coprime to n. Does there
exist a constant C' such that

foralln > 17
(Cyprus)

Answer: No, such constant does not exist.

Solution 1. Fix N > 1, let py,...,pr be all primes between 1 and N and pg,1, ..., prys be all
primes between N +1 and 2N. Since for j < k + s all prime divisors of p; —1 do not exceed NV,
we have

k+s k
[ =1 =]]»"
j=1 i=1
with some fixed exponents cy, ..., c;. Choose a huge prime number ¢ and consider a number
n=(pr . pe)" (Phrr o Dhts):
Then
p(d(n) = ¢(¢"-2°) = ¢" (g —1)2""
and
k+s k
d(p(n)) = d((m )] o - ) = (Hpq “c') ~[Jla—-1+c),
i=1 i=1
SO
_ s k
pld(n)) _ ¢ -2 oy g1 17—
d(e(n)) T, (g—1+¢) ¢ g-1+¢

which can be made arbitrarily close to 2°~! by choosing ¢ large enough. It remains to show
that s can be arbitrarily large, i.e. that there can be arbitrarily many primes between N and
2N.

This follows, for instance, from the well-known fact that Z% = o0, where the sum is taken
over the set P of prime numbers. Indeed, if, for some constant C, there were always at most C

primes between 2¢ and 27!, we would have
1 < 1 GO
NSy e
pelP’p =0 peP p =0

which is a contradiction.

Comment 1. Here we sketch several alternative elementary self-contained ways to perform the last
step of the solution above. In particular, they avoid using divergence of )| %.

Suppose that for some constant C and for every k = 1,2, ... there exist at most C' prime numbers
between 2% and 2F*!. Consider the prime factorization of the factorial (27)! = [[p®. We have
ap = |2"/p| + |2"/p*| + .... Thus, for p € [2F,281) we get , < 27/2F + 2n/2FF1 4 = on—k+l
therefore p» < 212" """ " Combining this with the bound (2m)! > m(m +1)-...- (2m —1) > m™

for m = 2" we get

g(n—1)-2n~1 H C(k+1)2n—k+1
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or

Z C(k+1)2 ’“>n;1

that fails for large n since C(k + 1)2'=% < 1/3 for all but finitely many k.
In fact, a much stronger inequality can be obtained in an elementary way: Note that the formula
for v, (n!) implies that if p® is the largest power of p dividing (nT/LQ), then p® < n. By looking at prime

factorization of (nT/LQ) we instantaneously infer that

WW%%<Q>mmm>n

n/2 logn =~ 2logn’

This, in particular, implies that for infinitely many n there are at least primes between n and 2n.

n
3logn
Solution 2. In this solution we will use the Prime Number Theorem which states that

m
= ——(1+4+0(1)),
m(m) = o (1+ 0(1)
as m tends to infinity. Here and below 7(m) denotes the number of primes not exceeding m,
and log the natural logarithm.
Let m > 5 be a large positive integer and let n := pips - ... - pr(m) be the product of all
primes not exceeding m. Then ¢(d(n)) = ¢ (27(™)) = 27™~1_ Consider the number

w(m) w(m/2)
= H pr—1) H q°
k=1
where qi, ..., Gr(m/2) are primes not exceeding m/2. Note that every term pj — 1 contributes at

most one prime g, > /m into the product [ [, ¢3¢, so we have

Z as < m(m) = Z (14 a,) < w(m) + 7(m/2).
81 qs>/m s:qs>y/m

A/e

Hence, applying the AM—GM inequality and the inequality (A/x)* < we obtain

s:ql;[m(as 1)< (ﬂ(m) +£7T(m/2)) < exp <7T(m) +€7T(m/2)),

where /£ is the number of primes in the interval (y/m,m].
We then use a trivial bound «; < log, (p(n)) < logyn < log, (m™) < m? for each i with

¢; < 4/m to obtain

m(y/m) i
H (as+1) < (m*)¥" = m>m,
s=1
Putting this together we obtain
m(m/2)

d(e(n)) = H (as +1) <exp <2\/ﬁ -logm +

s=1

m(m) + 7T(7‘0/2))_

e
The prime number theorem then implies that
7(m)+m(m/2) 3

log (d 2y/m -1
lim sup M < lim sup Lvm ogm + lim sup = —.
m—w  m/logm mow  m/logm mow  €-m/logm 2e

Whereas, again by prime number theorem, we have

1 27r(m)71
o elog(e(dm) L og (277T)

= log 2.
m—w  m/logm m—w  m/logm o8

Since 2 < 2 <log2, this implies that ¢(d(n))/d(¢(n)) can be arbitrarily large.
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Comment 2. The original formulation of the problem was asking whether d(p(n)) = ¢(d(n)) for all
but finitely many values of n. The Problem Selection Committee decided that the presented version
is better suited for the Shortlist.
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INT. Let S be a set consisting of n > 3 positive integers, none of which is a sum of two
other distinct members of S. Prove that the elements of S may be ordered as aq, as, ..., a, so
that a; does not divide a;_1 + a;41 forall e =2,3,...,n— 1.

(Ukraine)

Common remarks. In all solutions, we call a set S of positive integers good if no its element
is a sum of two other distinct members of S. We will use the following simple observation.

Observation A. If a, b, and ¢ are three distinct elements of a good set S with b > a, ¢, then
bt a+ c. Otherwise, since b # a + ¢, we would have b < (a + ¢)/2 < max{a, c}.

Solution 1. We prove the following stronger statement.

Claim. Let S be a good set consisting of n > 2 positive integers. Then the elements of S may
be ordered as ay, as, ..., a, so that a; t a;_1 + a;41 and a; { a;_1 —a;41, foralli =2,3,... ,n—1.

Proof. Say that the ordering ay, ..., a, of S is nice if it satisfies the required property.

We proceed by induction on n. The base case n = 2 is trivial, as there are no restrictions
on the ordering.

To perform the step of induction, suppose that n > 3. Let a = max S, and set T = S\ {a}.
Use the inductive hypothesis to find a nice ordering b, ..., b, 1 of T. We will show that a may
be inserted into this sequence so as to reach a nice ordering of S. In other words, we will show
that there exists a j € {1,2,...,n} such that the ordering

NJ = (bl, .. .7bj,17a, b], bj+1, e ey bnfl)

is nice.

Assume that, for some j, the ordering N; is not nice, so that some element x in it divides
either the sum or the difference of two adjacent ones. This did not happen in the ordering of T,
hence = € {b;_1,a, b;} (if, say, b;_; does not exist, then x € {a, b;}; a similar agreement is applied
hereafter). But the case © = a is impossible: a cannot divide b;_; —b;, since 0 < |b;_; —b;| < a,
while a { bj_1 + b; by Observation A. Therefore x € {b;_1,b;}. In this case, assign the number
x to the index j.

Suppose now that none of the N; is nice. Since there are n possible indices j, and only n—1
elements in 7, one of those elements (say, by) is assigned to two different indices, which then
should equal k£ and k + 1. This means that by divides the numbers b,_1 + €1a and a + £3by 1,
for some signs 1,65 € {—1,1}. But then

bk—l = —&1a = €1€2bk+1 (mod bk),

and therefore by | by_1 — €169bk, 1, which means that the ordering of 7 was not nice. This
contradiction proves the step of induction. O

Solution 2. We again prove a stronger statement.

Claim. Let S be an arbitrary set of n > 3 positive integers. Then its elements can be ordered
as ai,...,ay, so that, if a; | a;_1 + a;41, then a; = max S.

The claim easily implies what we need to prove, due to Observation A.

To prove the Claim, introduce the function f which assigns to any two elements a,b € S
with a < b the unique integer f(a,b) € {1,2,...,a} such that a | b+ f(a,b). Hence, if b | a + ¢
for some a,b,c € S with a < b < ¢, then a = f(b,c). Therefore, the Claim is a consequence of
the following combinatorial lemma.
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Lemma. Let S be a set of n > 3 positive integers, and let f be a function which assigns to any

a,b € § with a < b some integer from the range {1,...,a}. Then the elements of S may be
ordered as aq, as, ..., a, so as to satisfy the following two conditions simultaneously:

(i) Unimodality: There exists a j € {1,2,...,n} such that 1 <ay <...<a; > a1 > ...>
a,; and

(17) f-avoidance: If a < b are two elements of S, which are adjacent in the ordering, then
f(a,b) is not adjacent to a.

Proof. We call an ordering of S satisfying (i) and (i7) f-nice. We agree that f(z,y) = z for
x = y; this agreement puts no extra restriction.

We proceed by induction; for the base case n = 3, it suffices to put the maximal element
in S onto the middle position.

To perform the step of induction, let p < ¢ be the two minimal elements of S, and set
T =S\ {p}. Define a function g by assigning to any elements a < b of T the value

g if f(a,b) = p;
9(a,b) = {f(a, b), otherwise. 1)

Notice that g(a,b) < a for all a,be T.
Use the inductive hypothesis to get a g-nice ordering by, bs, ..., b,_; of 7. By unimodality,
either by or b,_; equals ¢; these cases differ only by reverting the order, so we assume b; = q.
Notice that, according to (1), the number f(bs, b3) differs from both p and g. On the other
hand, the number f(b,_1,b,_o) differs from at least one of them — say, from r; set s = p+q—r,
so that {r, s} = {p,¢}. Now, order S as

S, b27 b37 SRR bn717 T.
By the induction hypothesis and the above choice, this ordering is nice. ]

Comment. In the original proposal, the numbers in the set were assumed to be odd (which implies
that none is a sum of two others); moreover, the proposal requested to arrange in a row all numbers
but one.

On the other hand, Solution 2 shows that the condition of S being good may be relaxed to the
condition that the maximal element of S is not a sum of two other elements in S. On the other hand,
the set {1,2,3} shows that the condition cannot be merely omitted.

The Problem Selection Committee considered several versions of the problem and chose the best
version in their opinion for the Shortlist.
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