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Problems

Algebra

A1. Version 1. Let n be a positive integer, and set N “ 2n. Determine the smallest real
number an such that, for all real x,

N

c

x2N ` 1

2
ď anpx´ 1q2 ` x.

Version 2. For every positive integer N , determine the smallest real number bN such that,
for all real x,

N

c

x2N ` 1

2
ď bNpx ´ 1q2 ` x.

(Ireland)

A2. Let A denote the set of all polynomials in three variables x, y, z with integer
coefficients. Let B denote the subset of A formed by all polynomials which can be expressed as

px` y ` zqP px, y, zq ` pxy ` yz ` zxqQpx, y, zq ` xyzRpx, y, zq

with P,Q,R P A. Find the smallest non-negative integer n such that xiyjzk P B for all non-
negative integers i, j, k satisfying i ` j ` k ě n.

(Venezuela)

A3. Suppose that a, b, c, d are positive real numbers satisfying pa` cqpb` dq “ ac` bd.
Find the smallest possible value of

a

b
` b

c
` c

d
` d

a
.

(Israel)

A4. Let a, b, c, d be four real numbers such that a ě b ě c ě d ą 0 and a` b` c` d “ 1.
Prove that

pa ` 2b` 3c` 4dq aa bb cc dd ă 1.

(Belgium)

A5. A magician intends to perform the following trick. She announces a positive integer
n, along with 2n real numbers x1 ă . . . ă x2n, to the audience. A member of the audience then
secretly chooses a polynomial P pxq of degree n with real coefficients, computes the 2n values
P px1q, . . . , P px2nq, and writes down these 2n values on the blackboard in non-decreasing order.
After that the magician announces the secret polynomial to the audience.

Can the magician find a strategy to perform such a trick?
(Luxembourg)

A6. Determine all functions f : Z Ñ Z such that

fa2`b2pa ` bq “ afpaq ` bfpbq for every a, b P Z.

Here, fn denotes the nth iteration of f , i.e., f 0pxq “ x and fn`1pxq “ fpfnpxqq for all n ě 0.
(Slovakia)
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A7. Let n and k be positive integers. Prove that for a1, . . . , an P r1, 2ks one has

n
ÿ

i“1

ai
a

a21 ` . . .` a2i
ď 4

?
kn.

(Iran)

A8. Let R` be the set of positive real numbers. Determine all functions f : R` Ñ R`

such that, for all positive real numbers x and y,

f
`

x ` fpxyq
˘

` y “ fpxqfpyq ` 1.

(Ukraine)
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Combinatorics

C1. Let n be a positive integer. Find the number of permutations a1, a2, . . . , an of the
sequence 1, 2, . . . , n satisfying

a1 ď 2a2 ď 3a3 ď . . . ď nan.

(United Kingdom)

C2. In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are
colored white. Prove that there exist 24 convex quadrilaterals Q1, . . . , Q24 whose corners are
vertices of the 100-gon, so that

• the quadrilaterals Q1, . . . , Q24 are pairwise disjoint, and

• every quadrilateral Qi has three corners of one color and one corner of the other color.

(Austria)

C3. Let n be an integer with n ě 2. On a slope of a mountain, n2 checkpoints are
marked, numbered from 1 to n2 from the bottom to the top. Each of two cable car companies,
A and B, operates k cable cars numbered from 1 to k; each cable car provides a transfer from
some checkpoint to a higher one. For each company, and for any i and j with 1 ď i ă j ď k,
the starting point of car j is higher than the starting point of car i; similarly, the finishing point
of car j is higher than the finishing point of car i. Say that two checkpoints are linked by some
company if one can start from the lower checkpoint and reach the higher one by using one or
more cars of that company (no movement on foot is allowed).

Determine the smallest k for which one can guarantee that there are two checkpoints that
are linked by each of the two companies.

(India)

C4. The Fibonacci numbers F0, F1, F2, . . . are defined inductively by F0 “ 0, F1 “ 1, and
Fn`1 “ Fn ` Fn´1 for n ě 1. Given an integer n ě 2, determine the smallest size of a set S of
integers such that for every k “ 2, 3, . . . , n there exist some x, y P S such that x´ y “ Fk.

(Croatia)

C5. Let p be an odd prime, and put N “ 1
4
pp3 ´ pq ´ 1. The numbers 1, 2, . . . , N are

painted arbitrarily in two colors, red and blue. For any positive integer n ď N , denote by rpnq
the fraction of integers in t1, 2, . . . , nu that are red.

Prove that there exists a positive integer a P t1, 2, . . . , p ´ 1u such that rpnq ‰ a{p for all
n “ 1, 2, . . . , N .

(Netherlands)

C6. 4n coins of weights 1, 2, 3, . . . , 4n are given. Each coin is colored in one of n colors
and there are four coins of each color. Show that all these coins can be partitioned into two
sets with the same total weight, such that each set contains two coins of each color.

(Hungary)
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C7. Consider any rectangular table having finitely many rows and columns, with a real
number apr, cq in the cell in row r and column c. A pair pR,Cq, where R is a set of rows and
C a set of columns, is called a saddle pair if the following two conditions are satisfied:

piq For each row r1, there is r P R such that apr, cq ě apr1, cq for all c P C;

piiq For each column c1, there is c P C such that apr, cq ď apr, c1q for all r P R.

A saddle pair pR,Cq is called a minimal pair if for each saddle pair pR1, C 1q with R1 Ď R

and C 1 Ď C, we have R1 “ R and C 1 “ C.
Prove that any two minimal pairs contain the same number of rows.

(Thailand)

C8. Players A and B play a game on a blackboard that initially contains 2020 copies
of the number 1. In every round, player A erases two numbers x and y from the blackboard,
and then player B writes one of the numbers x ` y and |x ´ y| on the blackboard. The game
terminates as soon as, at the end of some round, one of the following holds:

(1) one of the numbers on the blackboard is larger than the sum of all other numbers;

(2) there are only zeros on the blackboard.

Player B must then give as many cookies to player A as there are numbers on the blackboard.
Player A wants to get as many cookies as possible, whereas player B wants to give as few as
possible. Determine the number of cookies that A receives if both players play optimally.

(Austria)
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Geometry

G1. Let ABC be an isosceles triangle with BC “ CA, and let D be a point inside side
AB such that AD ă DB. Let P and Q be two points inside sides BC and CA, respectively,
such that =DPB “ =DQA “ 90˝. Let the perpendicular bisector of PQ meet line segment
CQ at E, and let the circumcircles of triangles ABC and CPQ meet again at point F , different
from C.

Suppose that P,E, F are collinear. Prove that =ACB “ 90˝.
(Luxembourg)

G2. Let ABCD be a convex quadrilateral. Suppose that P is a point in the interior of
ABCD such that

=PAD : =PBA : =DPA “ 1 : 2 : 3 “ =CBP : =BAP : =BPC.

The internal bisectors of angles ADP and PCB meet at a point Q inside the triangle ABP .
Prove that AQ “ BQ.

(Poland)

G3. Let ABCD be a convex quadrilateral with =ABC ą 90˝, =CDA ą 90˝, and
=DAB “ =BCD. Denote by E and F the reflections of A in lines BC and CD, respectively.
Suppose that the segments AE and AF meet the line BD at K and L, respectively. Prove that
the circumcircles of triangles BEK and DFL are tangent to each other.

(Slovakia)

G4. In the plane, there are n ě 6 pairwise disjoint disks D1, D2, . . . , Dn with radii
R1 ě R2 ě . . . ě Rn. For every i “ 1, 2, . . . , n, a point Pi is chosen in disk Di. Let O be an
arbitrary point in the plane. Prove that

OP1 ` OP2 ` . . .` OPn ě R6 ` R7 ` . . .` Rn.

(A disk is assumed to contain its boundary.)
(Iran)

G5. Let ABCD be a cyclic quadrilateral with no two sides parallel. Let K, L, M , and N
be points lying on sides AB, BC, CD, and DA, respectively, such that KLMN is a rhombus
with KL ‖ AC and LM ‖ BD. Let ω1, ω2, ω3, and ω4 be the incircles of triangles ANK,
BKL, CLM , and DMN , respectively. Prove that the internal common tangents to ω1 and ω3

and the internal common tangents to ω2 and ω4 are concurrent.
(Poland)

G6. Let I and IA be the incenter and the A-excenter of an acute-angled triangle ABC
with AB ă AC. Let the incircle meet BC at D. The line AD meets BIA and CIA at E
and F , respectively. Prove that the circumcircles of triangles AID and IAEF are tangent to
each other.

(Slovakia)
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G7. Let P be a point on the circumcircle of an acute-angled triangle ABC. Let D,
E, and F be the reflections of P in the midlines of triangle ABC parallel to BC, CA, and AB,
respectively. Denote by ωA, ωB, and ωC the circumcircles of triangles ADP , BEP , and CFP ,
respectively. Denote by ω the circumcircle of the triangle formed by the perpendicular bisectors
of segments AD, BE and CF .

Show that ωA, ωB, ωC , and ω have a common point.
(Denmark)

G8. Let Γ and I be the circumcircle and the incenter of an acute-angled triangle ABC.
Two circles ωB and ωC passing through B and C, respectively, are tangent at I. Let ωB meet
the shorter arc AB of Γ and segment AB again at P and M , respectively. Similarly, let ωC

meet the shorter arc AC of Γ and segment AC again at Q and N , respectively. The rays PM
and QN meet at X, and the tangents to ωB and ωC at B and C, respectively, meet at Y .

Prove that the points A, X, and Y are collinear.
(Netherlands)

G9. Prove that there exists a positive constant c such that the following statement is
true:

Assume that n is an integer with n ě 2, and let S be a set of n points in the plane such
that the distance between any two distinct points in S is at least 1. Then there is a line ℓ
separating S such that the distance from any point of S to ℓ is at least cn´1{3.

(A line ℓ separates a point set S if some segment joining two points in S crosses ℓ.)
(Taiwan)
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Number Theory

N1. Given a positive integer k, show that there exists a prime p such that one can choose
distinct integers a1, a2, . . . , ak`3 P t1, 2, . . . , p ´ 1u such that p divides aiai`1ai`2ai`3 ´ i for all
i “ 1, 2, . . . , k.

(South Africa)

N2. For each prime p, there is a kingdom of p-Landia consisting of p islands numbered
1, 2, . . . , p. Two distinct islands numbered n and m are connected by a bridge if and only if
p divides pn2 ´ m ` 1qpm2 ´ n ` 1q. The bridges may pass over each other, but cannot cross.
Prove that for infinitely many p there are two islands in p-Landia not connected by a chain of
bridges.

(Denmark)

N3. Let n be an integer with n ě 2. Does there exist a sequence pa1, . . . , anq of positive
integers with not all terms being equal such that the arithmetic mean of every two terms is
equal to the geometric mean of some (one or more) terms in this sequence?

(Estonia)

N4. For any odd prime p and any integer n, let dppnq P t0, 1, . . . , p ´ 1u denote the
remainder when n is divided by p. We say that pa0, a1, a2, . . .q is a p-sequence, if a0 is a positive
integer coprime to p, and an`1 “ an ` dppanq for n ě 0.

(a) Do there exist infinitely many primes p for which there exist p-sequences pa0, a1, a2, . . .q and
pb0, b1, b2, . . .q such that an ą bn for infinitely many n, and bn ą an for infinitely many n?

(b) Do there exist infinitely many primes p for which there exist p-sequences pa0, a1, a2, . . .q and
pb0, b1, b2, . . .q such that a0 ă b0, but an ą bn for all n ě 1?

(United Kingdom)

N5. Determine all functions f defined on the set of all positive integers and taking
non-negative integer values, satisfying the three conditions:

piq fpnq ‰ 0 for at least one n;

piiq fpxyq “ fpxq ` fpyq for every positive integers x and y;

piiiq there are infinitely many positive integers n such that fpkq “ fpn´ kq for all k ă n.
(Croatia)

N6. For a positive integer n, let dpnq be the number of positive divisors of n, and let
ϕpnq be the number of positive integers not exceeding n which are coprime to n. Does there
exist a constant C such that

ϕpdpnqq
dpϕpnqq ď C

for all n ě 1?
(Cyprus)

N7. Let S be a set consisting of n ě 3 positive integers, none of which is a sum of two
other distinct members of S. Prove that the elements of S may be ordered as a1, a2, . . . , an so
that ai does not divide ai´1 ` ai`1 for all i “ 2, 3, . . . , n´ 1.

(Ukraine)
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Solutions

Algebra

A1. Version 1. Let n be a positive integer, and set N “ 2n. Determine the smallest real
number an such that, for all real x,

N

c

x2N ` 1

2
ď anpx´ 1q2 ` x.

Version 2. For every positive integer N , determine the smallest real number bN such that,
for all real x,

N

c

x2N ` 1

2
ď bNpx ´ 1q2 ` x.

(Ireland)

Answer for both versions : an “ bN “ N{2.

Solution 1 (for Version 1). First of all, assume that an ă N{2 satisfies the condition. Take
x “ 1 ` t for t ą 0, we should have

p1 ` tq2N ` 1

2
ď p1 ` t` ant

2qN .

Expanding the brackets we get

p1 ` t` ant
2qN ´ p1 ` tq2N ` 1

2
“
ˆ

Nan ´ N2

2

˙

t2 ` c3t
3 ` . . .` c2N t

2N (1)

with some coefficients c3, . . . , c2N . Since an ă N{2, the right hand side of (1) is negative for
sufficiently small t. A contradiction.

It remains to prove the following inequality

N

c

1 ` x2N

2
ď x` N

2
px´ 1q2, IpN, xq

where N “ 2n.
Use induction in n. The base case n “ 0 is trivial: N “ 1 and both sides of IpN, xq are

equal to p1 ` x2q{2. For completing the induction we prove Ip2N, xq assuming that IpN, yq is
established for all real y. We have

`

x ` Npx ´ 1q2
˘2 “ x2 ` N2px´ 1q4 ` Npx ´ 1q2 px` 1q2 ´ px´ 1q2

2

“ x2 ` N

2
px2 ´ 1q2 `

ˆ

N2 ´ N

2

˙

px ´ 1q4 ě x2 ` N

2
px2 ´ 1q2 ě N

c

1 ` x4N

2
,

where the last inequality is IpN, x2q. Since

x ` Npx ´ 1q2 ě x ` px´ 1q2
2

“ x2 ` 1

2
ě 0,

taking square root we get Ip2N, xq. The inductive step is complete.
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Solution 2.1 (for Version 2). Like in Solution 1 of Version 1, we conclude that bN ě N{2.
It remains to prove the inequality IpN, xq for an arbitrary positive integer N .

First of all, IpN, 0q is obvious. Further, if x ą 0, then the left hand sides of IpN,´xq and
IpN, xq coincide, while the right hand side of IpN,´xq is larger than that of IpN,´xq (their
difference equals 2pN ´ 1qx ě 0). Therefore, IpN,´xq follows from IpN, xq. So, hereafter we
suppose that x ą 0.

Divide IpN, xq by x and let t “ px ´ 1q2{x “ x ´ 2 ` 1{x; then Ipn, xq reads as

fN :“ xN ` x´N

2
ď
ˆ

1 ` N

2
t

˙N

. (2)

The key identity is the expansion of fN as a polynomial in t:

Lemma.

fN “ N

N
ÿ

k“0

1

N ` k

ˆ

N ` k

2k

˙

tk. (3)

Proof. Apply induction on N . We will make use of the straightforward recurrence relation

fN`1 ` fN´1 “ px ` 1{xqfN “ p2 ` tqfN . (4)

The base cases N “ 1, 2 are straightforward:

f1 “ 1 ` t

2
, f2 “ 1

2
t2 ` 2t` 1.

For the induction step from N ´ 1 and N to N ` 1, we compute the coefficient of tk in fN`1

using the formula fN`1 “ p2 ` tqfN ´ fN´1. For k “ 0 that coefficient equals 1, for k ą 0 it
equals

2
N

N ` k

ˆ

N ` k

2k

˙

` N

N ` k ´ 1

ˆ

N ` k ´ 1

2k ´ 2

˙

´ N ´ 1

N ` k ´ 1

ˆ

N ` k ´ 1

2k

˙

“ pN ` k ´ 1q!
p2kq!pN ´ kq!

ˆ

2N ` 2kp2k ´ 1qN
pN ` k ´ 1qpN ´ k ` 1q ´ pN ´ 1qpN ´ kq

N ` k ´ 1

˙

“ pN ` k ´ 1q!
p2kq!pN ´ k ` 1q!

`

2NpN ´ k ` 1q ` 3kN ` k ´ N2 ´ N
˘

“
`

N`k`1

2k

˘

pN ` k ` 1qpN ` 1q,

that completes the induction. l

Turning back to the problem, in order to prove (2) we write

ˆ

1 ` N

2
t

˙N

´ fN “
ˆ

1 ` N

2
t

˙N

´ N

N
ÿ

k“0

1

N ` k

ˆ

N ` k

2k

˙

tk “
N
ÿ

k“0

αkt
k,

where

αk “
ˆ

N

2

˙k ˆ
N

k

˙

´ N

N ` k

ˆ

N ` k

2k

˙

“
ˆ

N

2

˙k ˆ
N

k

˙ˆ

1 ´ 2k
p1 ` 1{Nqp1 ` 2{Nq ¨ . . . ¨ p1 ` pk ´ 1q{Nq

pk ` 1q ¨ . . . ¨ p2kq

˙

ě
ˆ

N

2

˙k ˆ
N

k

˙ˆ

1 ´ 2k
2 ¨ 3 ¨ . . . ¨ k

pk ` 1q ¨ . . . ¨ p2kq

˙

“
ˆ

N

2

˙k ˆ
N

k

˙

˜

1 ´
k
ź

j“1

2j

k ` j

¸

ě 0,

and (2) follows.
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Solution 2.2 (for Version 2). Here we present another proof of the inequality (2) for x ą 0,
or, equivalently, for t “ px ´ 1q2{x ě 0. Instead of finding the coefficients of the polynomial
fN “ fN ptq we may find its roots, which is in a sense more straightforward. Note that the
recurrence (4) and the initial conditions f0 “ 1, f1 “ 1` t{2 imply that fN is a polynomial in t
of degree N . It also follows by induction that fNp0q “ 1, f 1

Np0q “ N2{2: the recurrence relations
read as fN`1p0q ` fN´1p0q “ 2fN p0q and f 1

N`1p0q ` f 1
N´1p0q “ 2f 1

Np0q ` fNp0q, respectively.

Next, if xk “ expp iπp2k´1q
2N

q for k P t1, 2, . . . , Nu, then

´tk :“ 2 ´ xk ´ 1

xk
“ 2 ´ 2 cos

πp2k ´ 1q
2N

“ 4 sin2 πp2k ´ 1q
4N

ą 0

and

fNptkq “ xNk ` x´N
k

2
“

exp
´

iπp2k´1q
2

¯

` exp
´

´ iπp2k´1q
2

¯

2
“ 0.

So the roots of fN are t1, . . . , tN and by the AM–GM inequality we have

fNptq “
ˆ

1 ´ t

t1

˙ˆ

1 ´ t

t2

˙

. . .

ˆ

1 ´ t

tN

˙

ď
ˆ

1 ´ t

N

ˆ

1

t1
` . . .` 1

tn

˙˙N

“
ˆ

1 ` tf 1
N p0q
N

˙N

“
ˆ

1 ` N

2
t

˙N

.

Comment. The polynomial fN ptq equals to 1
2
TN pt` 2q, where Tn is the nth Chebyshev polynomial of

the first kind: Tnp2 cos sq “ 2 cos ns, Tnpx ` 1{xq “ xn ` 1{xn.

Solution 2.3 (for Version 2). Here we solve the problem when N ě 1 is an arbitrary real
number. For a real number a let

fpxq “
ˆ

x2N ` 1

2

˙
1

N

´ apx´ 1q2 ´ x.

Then fp1q “ 0,

f 1pxq “
ˆ

x2N ` 1

2

˙
1

N
´1

x2N´1 ´ 2apx ´ 1q ´ 1 and f 1p1q “ 0;

f 2pxq “ p1´Nq
ˆ

x2N ` 1

2

˙
1

N
´2

x4N´2`p2N´1q
ˆ

x2N ` 1

2

˙
1

N
´1

x2N´2´2a and f 2p1q “ N´2a.

So if a ă N
2
, the function f has a strict local minimum at point 1, and the inequality fpxq ď

0 “ fp1q does not hold. This proves bN ě N{2.
For a “ N

2
we have f 2p1q “ 0 and

f3pxq “ 1

2
p1 ´ Nqp1 ´ 2Nq

´

x2N`1
2

¯
1

N
´3

x2N´3p1 ´ x2N q
#

ą 0 if 0 ă x ă 1 and

ă 0 if x ą 1.

Hence, f 2pxq ă 0 for x ‰ 1; f 1pxq ą 0 for x ă 1 and f 1pxq ă 0 for x ą 1, finally fpxq ă 0 for
x ‰ 1.

Comment. Version 2 is much more difficult, of rather A5 or A6 difficulty. The induction in Version
1 is rather straightforward, while all three above solutions of Version 2 require some creativity.
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A2. Let A denote the set of all polynomials in three variables x, y, z with integer
coefficients. Let B denote the subset of A formed by all polynomials which can be expressed as

px` y ` zqP px, y, zq ` pxy ` yz ` zxqQpx, y, zq ` xyzRpx, y, zq

with P,Q,R P A. Find the smallest non-negative integer n such that xiyjzk P B for all non-
negative integers i, j, k satisfying i ` j ` k ě n.

(Venezuela)

Answer: n “ 4.

Solution. We start by showing that n ď 4, i.e., any monomial f “ xiyjzk with i ` j ` k ě 4

belongs to B. Assume that i ě j ě k, the other cases are analogous.
Let x ` y ` z “ p, xy ` yz ` zx “ q and xyz “ r. Then

0 “ px´ xqpx ´ yqpx´ zq “ x3 ´ px2 ` qx ´ r,

therefore x3 P B. Next, x2y2 “ xyq ´ px` yqr P B.
If k ě 1, then r divides f , thus f P B. If k “ 0 and j ě 2, then x2y2 divides f , thus we

have f P B again. Finally, if k “ 0, j ď 1, then x3 divides f and f P B in this case also.

In order to prove that n ě 4, we show that the monomial x2y does not belong to B. Assume
the contrary:

x2y “ pP ` qQ` rR (1)

for some polynomials P,Q,R. If polynomial P contains the monomial x2 (with nonzero coeffi-
cient), then pP ` qQ ` rR contains the monomial x3 with the same nonzero coefficient. So P
does not contain x2, y2, z2 and we may write

x2y “ px ` y ` zqpaxy ` byz ` czxq ` pxy ` yz ` zxqpdx ` ey ` fzq ` gxyz,

where a, b, c; d, e, f ; g are the coefficients of xy, yz, zx; x, y, z; xyz in the polynomials P ;
Q; R, respectively (the remaining coefficients do not affect the monomials of degree 3 in
pP ` qQ` rR). By considering the coefficients of xy2 we get e “ ´a, analogously e “ ´b,
f “ ´b, f “ ´c, d “ ´c, thus a “ b “ c and f “ e “ d “ ´a, but then the coefficient of x2y
in the right hand side equals a` d “ 0 ‰ 1.

Comment 1. The general question is the following. Call a polynomial fpx1, . . . , xnq with integer
coefficients nice, if fp0, 0, . . . , 0q “ 0 and fpxπ1

, . . . , xπnq “ fpx1, . . . , xnq for any permutation π of
1, . . . , n (in other words, f is symmetric and its constant term is zero.) Denote by I the set of
polynomials of the form

p1q1 ` p2q2 ` . . . ` pmqm, (2)

where m is an integer, q1, . . . , qm are polynomials with integer coefficients, and p1, . . . , pm are nice
polynomials. Find the least N for which any monomial of degree at least N belongs to I .

The answer is npn ´ 1q{2 ` 1. The lower bound follows from the following claim: the polynomial

F px1, . . . , xnq “ x2x
2
3x

3
4 ¨ . . . ¨ xn´1

n

does not belong to I .
Assume that F “

ř

piqi, according to (2). By taking only the monomials of degree npn´ 1q{2, we
can additionally assume that every pi and every qi is homogeneous, deg pi ą 0, and deg pi ` deg qi “
degF “ npn ´ 1q{2 for all i.

Consider the alternating sum

ÿ

π

signpπqF pxπ1
, . . . , xπnq “

m
ÿ

i“1

pi
ÿ

π

signpπqqipxπ1
, . . . , xπnq :“ S, (3)
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where the summation is done over all permutations π of 1, . . . n, and signpπq denotes the sign of the
permutation π. Since deg qi “ npn ´ 1q{2 ´ deg pi ă npn ´ 1q{2, in any monomial Q of qi, there are at
least two variables, say xα and xβ, with equal exponents. Therefore

ř

π signpπqQpxπ1
, . . . , xπnq “ 0,

because each pair of terms that corresponds to permutations which differ by the transposition of α

and β, cancels out. This holds for any i “ 1, . . . ,m and any monomial of qi, so S “ 0. But the left
hand side of (3) is a non-zero polynomial. This is a contradiction.

Let us now prove, using induction on n, that any monomial h “ xc11 . . . xcnn of degree npn´1q{2`1

belongs to I , and additionally all pi, qi in the representation (2) can be chosen homogeneous with sum
of degrees equal to npn ´ 1q{2 ` 1. (Obviously, any monomial of degree at least npn ´ 1q{2 ` 1 is
divisible by a monomial of degree exactly npn ´ 1q{2 ` 1, thus this suffices.) The proposition is true
for n “ 1, so assume that n ą 1 and that the proposition is proved for smaller values of n.

We proceed by an internal induction on S :“ |ti : ci “ 0u|. In the base case S “ 0 the monomial
h is divisible by the nice polynomial x1 ¨ . . . ¨ xn, therefore h P I . Now assume that S ą 0 and that
the claim holds for smaller values of S. Let T “ n ´ S. We may assume that cT`1 “ . . . “ cn “ 0

and h “ x1 ¨ . . . ¨ xT gpx1, . . . , xn´1q, where deg g “ npn ´ 1q{2 ´ T ` 1 ě pn ´ 1qpn ´ 2q{2 ` 1. Using
the outer induction hypothesis we represent g as p1q1 ` . . . ` pmqm, where pipx1, . . . , xn´1q are nice
polynomials in n ´ 1 variables. There exist nice homogeneous polynomials Pipx1, . . . , xnq such that
Pipx1, . . . , xn´1, 0q “ pipx1, . . . , xn´1q. In other words, ∆i :“ pipx1, . . . , xn´1q ´Pipx1, . . . , xn´1, xnq is
divisible by xn, let ∆i “ xngi. We get

h “ x1 ¨ . . . ¨ xT
ÿ

piqi “ x1 ¨ . . . ¨ xT
ÿ

pPi ` xngiqqi “ px1 ¨ . . . ¨ xTxnq
ÿ

giqi `
ÿ

Piqi P I.

The first term belongs to I by the inner induction hypothesis. This completes both inductions.

Comment 2. The solutions above work smoothly for the versions of the original problem and its
extensions to the case of n variables, where all polynomials are assumed to have real coefficients. In
the version with integer coefficients, the argument showing that x2y R B can be simplified: it is not
hard to show that in every polynomial f P B, the sum of the coefficients of x2y, x2z, y2x, y2z, z2x and
z2y is even. A similar fact holds for any number of variables and also implies that N ě npn´ 1q{2 ` 1

in terms of the previous comment.
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A3. Suppose that a, b, c, d are positive real numbers satisfying pa` cqpb` dq “ ac` bd.
Find the smallest possible value of

S “ a

b
` b

c
` c

d
` d

a
.

(Israel)

Answer: The smallest possible value is 8.

Solution 1. To show that S ě 8, apply the AM–GM inequality twice as follows:

´a

b
` c

d

¯

`
ˆ

b

c
` d

a

˙

ě 2

c

ac

bd
`2

c

bd

ac
“ 2pac` bdq?

abcd
“ 2pa` cqpb` dq?

abcd
ě 2 ¨ 2

?
ac ¨ 2

?
bd?

abcd
“ 8 .

The above inequalities turn into equalities when a “ c and b “ d. Then the condition
pa ` cqpb` dq “ ac` bd can be rewritten as 4ab “ a2 `b2. So it is satisfied when a{b “ 2 ˘

?
3.

Hence, S attains value 8, e.g., when a “ c “ 1 and b “ d “ 2 `
?
3.

Solution 2. By homogeneity we may suppose that abcd “ 1. Let ab “ C, bc “ A and
ca “ B. Then a, b, c can be reconstructed from A, B and C as a “

a

BC{A, b “
a

AC{B
and c “

a

AB{C. Moreover, the condition pa` cqpb` dq “ ac` bd can be written in terms of
A,B,C as

A` 1

A
` C ` 1

C
“ bc` ad ` ab ` cd “ pa` cqpb ` dq “ ac ` bd “ B ` 1

B
.

We then need to minimize the expression

S :“ ad ` bc

bd
` ab ` cd

ac
“
ˆ

A` 1

A

˙

B `
ˆ

C ` 1

C

˙

1

B

“
ˆ

A` 1

A

˙ˆ

B ´ 1

B

˙

`
ˆ

A` 1

A
` C ` 1

C

˙

1

B

“
ˆ

A` 1

A

˙ˆ

B ´ 1

B

˙

`
ˆ

B ` 1

B

˙

1

B
.

Without loss of generality assume that B ě 1 (otherwise, we may replace B by 1{B and swap
A and C, this changes neither the relation nor the function to be maximized). Therefore, we
can write

S ě 2

ˆ

B ´ 1

B

˙

`
ˆ

B ` 1

B

˙

1

B
“ 2B `

ˆ

1 ´ 1

B

˙2

“: fpBq.

Clearly, f increases on r1,8q. Since

B ` 1

B
“ A ` 1

A
` C ` 1

C
ě 4,

we have B ě B1, where B1 “ 2 `
?
3 is the unique root greater than 1 of the equation

B1 ` 1{B1 “ 4. Hence,

S ě fpBq ě fpB1q “ 2

ˆ

B1 ´ 1

B1

˙

`
ˆ

B1 ` 1

B1

˙

1

B1 “ 2B1 ´ 2

B1 ` 4

B1 “ 8.

It remains to note that when A “ C “ 1 and B “ B1 we have the equality S “ 8.
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Solution 3. We present another proof of the inequality S ě 8. We start with the estimate

´a

b
` c

d

¯

`
ˆ

b

c
` d

a

˙

ě 2

c

ac

bd
` 2

c

bd

ac
.

Let y “ ?
ac and z “

?
bd, and assume, without loss of generality, that ac ě bd. By the

AM–GM inequality, we have

y2 ` z2 “ ac` bd “ pa` cqpb` dq ě 2
?
ac ¨ 2

?
bd “ 4yz.

Substituting x “ y{z, we get 4x ď x2 ` 1. For x ě 1, this holds if and only if x ě 2 `
?
3.

Now we have

2

c

ac

bd
` 2

c

bd

ac
“ 2

ˆ

x` 1

x

˙

.

Clearly, this is minimized by setting xpě 1q as close to 1 as possible, i.e., by taking x “ 2`
?
3.

Then 2px` 1{xq “ 2pp2 `
?
3q ` p2 ´

?
3qq “ 8, as required.
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A4. Let a, b, c, d be four real numbers such that a ě b ě c ě d ą 0 and a` b` c` d “ 1.
Prove that

pa ` 2b` 3c` 4dq aa bb cc dd ă 1.

(Belgium)

Solution 1. The weighted AM–GM inequality with weights a, b, c, d gives

aabbccdd ď a ¨ a` b ¨ b` c ¨ c` d ¨ d “ a2 ` b2 ` c2 ` d2,

so it suffices to prove that pa` 2b` 3c` 4dqpa2 ` b2 ` c2 ` d2q ă 1 “ pa` b` c` dq3. This can
be done in various ways, for example:

pa ` b` c` dq3 ą a2pa ` 3b` 3c` 3dq ` b2p3a` b ` 3c` 3dq
` c2p3a` 3b ` c` 3dq ` d2p3a` 3b ` 3c` dq

ě pa2 ` b2 ` c2 ` d2q ¨ pa ` 2b` 3c` 4dq.

Solution 2. From b ě d we get

a` 2b ` 3c` 4d ď a ` 3b` 3c` 3d “ 3 ´ 2a.

If a ă 1
2
, then the statement can be proved by

pa ` 2b` 3c` 4dq aabbccdd ď p3 ´ 2aqaaabacad “ p3 ´ 2aqa “ 1 ´ p1 ´ aqp1 ´ 2aq ă 1.

From now on we assume 1
2

ď a ă 1.

By b, c, d ă 1 ´ a we have

bbccdd ă p1 ´ aqb ¨ p1 ´ aqc ¨ p1 ´ aqd “ p1 ´ aq1´a.

Therefore,
pa` 2b` 3c` 4dqaabbccdd ă p3 ´ 2aq aa p1 ´ aq1´a.

For 0 ă x ă 1, consider the functions

fpxq “ p3´ 2xqxxp1´ xq1´x and gpxq “ log fpxq “ logp3´ 2xq ` x log x` p1´ xq logp1´ xq;
hereafter, log denotes the natural logarithm. It is easy to verify that

g2pxq “ ´ 4

p3 ´ 2xq2 ` 1

x
` 1

1 ´ x
“ 1 ` 8p1 ´ xq2
xp1 ´ xqp3 ´ 2xq2 ą 0,

so g is strictly convex on p0, 1q.
By g

`

1
2

˘

“ log 2 ` 2 ¨ 1
2
log 1

2
“ 0 and lim

xÑ1´
gpxq “ 0, we have gpxq ď 0 (and hence fpxq ď 1)

for all x P
“

1
2
, 1
˘

, and therefore

pa` 2b ` 3c` 4dqaabbccdd ă fpaq ď 1.

Comment. For a large number of variables a1 ě a2 ě . . . ě an ą 0 with
ř

i ai “ 1, the inequality
˜

ÿ

i

iai

¸

ź

i

aaii ď 1

does not necessarily hold. Indeed, let a2 “ a3 “ . . . “ an “ ε and a1 “ 1 ´ pn ´ 1qε, where n and
ε P p0, 1{nq will be chosen later. Then

˜

ÿ

i

iai

¸

ź

i

aaii “
ˆ

1 ` npn ´ 1q
2

ε

˙

εpn´1qεp1 ´ pn ´ 1qεq1´pn´1qε. p1q

If ε “ C{n2 with an arbitrary fixed C ą 0 and n Ñ 8, then the factors εpn´1qε “ expppn ´ 1qε log εq
and p1 ´ pn ´ 1qεq1´pn´1qε tend to 1, so the limit of p1q in this set-up equals 1 ` C{2. This is not
simply greater than 1, but it can be arbitrarily large.
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A5. A magician intends to perform the following trick. She announces a positive integer
n, along with 2n real numbers x1 ă . . . ă x2n, to the audience. A member of the audience then
secretly chooses a polynomial P pxq of degree n with real coefficients, computes the 2n values
P px1q, . . . , P px2nq, and writes down these 2n values on the blackboard in non-decreasing order.
After that the magician announces the secret polynomial to the audience.

Can the magician find a strategy to perform such a trick?
(Luxembourg)

Answer: No, she cannot.

Solution. Let x1 ă x2 ă . . . ă x2n be real numbers chosen by the magician. We will construct
two distinct polynomials P pxq and Qpxq, each of degree n, such that the member of audience
will write down the same sequence for both polynomials. This will mean that the magician
cannot distinguish P from Q.

Claim. There exists a polynomial P pxq of degree n such that P px2i´1q ` P px2iq “ 0 for i “
1, 2, . . . , n.

Proof. We want to find a polynomial anx
n ` . . . ` a1x ` a0 satisfying the following system of

equations:

$

’

’

’

&

’

’

’

%

pxn1 ` xn2 qan ` pxn´1
1 ` xn´1

2 qan´1 ` . . .` 2a0 “ 0

pxn3 ` xn4 qan ` pxn´1
3 ` xn´1

4 qan´1 ` . . .` 2a0 “ 0

¨ ¨ ¨
pxn2n´1 ` xn2nqan ` pxn´1

2n´1 ` xn´1
2n qan´1 ` . . .` 2a0 “ 0

We use the well known fact that a homogeneous system of n linear equations in n ` 1

variables has a nonzero solution. (This fact can be proved using induction on n, via elimination
of variables.) Applying this fact to the above system, we find a nonzero polynomial P pxq
of degree not exceeding n such that its coefficients a0, . . . , an satisfy this system. Therefore
P px2i´1q ` P px2iq “ 0 for all i “ 1, 2, . . . , n. Notice that P has a root on each segment
rx2i´1, x2is by the Intermediate Value theorem, so n roots in total. Since P is nonzero, we get
deg P “ n. l

Now consider a polynomial P pxq provided by the Claim, and take Qpxq “ ´P pxq. The
properties of P pxq yield that P px2i´1q “ Qpx2iq and Qpx2i´1q “ P px2iq for all i “ 1, 2, . . . , n.
It is also clear that P ‰ ´P “ Q and degQ “ deg P “ n.

Comment. It can be shown that for any positive integer n the magician can choose 2n ` 1 distinct
real numbers so as to perform such a trick. Moreover, she can perform such a trick with almost all (in
a proper sense) p2n ` 1q-tuples of numbers.
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A6. Determine all functions f : Z Ñ Z such that

fa2`b2pa ` bq “ afpaq ` bfpbq for every a, b P Z.

Here, fn denotes the nth iteration of f , i.e., f 0pxq “ x and fn`1pxq “ fpfnpxqq for all n ě 0.
(Slovakia)

Answer: Either fpxq “ 0 for all x P Z, or fpxq “ x` 1 for all x P Z.

Solution. Refer to the main equation as Epa, bq.
Ep0, bq reads as f b2pbq “ bfpbq. For b “ ´1 this gives fp´1q “ 0.
Now Epa,´1q reads as

fa2`1pa´ 1q “ afpaq “ fa2paq. p1q
For x P Z define the orbit of x by Opxq “

 

x, fpxq, fpfpxqq, . . .
(

Ď Z. We see that the orbits
Opa´ 1q and Opaq differ by finitely many terms. Hence, any two orbits differ by finitely many
terms. In particular, this implies that either all orbits are finite or all orbits are infinite.

Case 1: All orbits are finite.

Then Op0q is finite. Using Epa,´aq we get

a
`

fpaq ´ fp´aq
˘

“ afpaq ´ afp´aq “ f 2a2p0q P Op0q.

For |a| ą max
zPOp0q

|z|, this yields fpaq “ fp´aq and f 2a2p0q “ 0. Therefore, the sequence
`

fkp0q : k “ 0, 1, . . .
˘

is purely periodic with a minimal period T which divides 2a2. Anal-
ogously, T divides 2pa ` 1q2, therefore, T | gcd

`

2a2, 2pa ` 1q2
˘

“ 2, i.e., fpfp0qq “ 0 and

a
`

fpaq ´ fp´aq
˘

“ f 2a2p0q “ 0 for all a. Thus,

fpaq “ fp´aq for all a ‰ 0; (♣)

in particular, fp1q “ fp´1q “ 0. (♠)

Next, for each n P Z, by Epn, 1 ´ nq we get

nfpnq ` p1 ´ nqfp1 ´ nq “ fn2`p1´nq2p1q “ f 2n2´2np0q “ 0. p♥q

Assume that there exists some m ‰ 0 such that fpmq ‰ 0. Choose such an m for which |m| is
minimal possible. Then |m| ą 1 due to p♠q; fp|m|q ‰ 0 due to p♣q; and fp1 ´ |m|q ‰ 0 due
to p♥q for n “ |m|. This contradicts to the minimality assumption.

So, fpnq “ 0 for n ‰ 0. Finally, fp0q “ f 3p0q “ f 4p2q “ 2fp2q “ 0. Clearly, the function
fpxq ” 0 satisfies the problem condition, which provides the first of the two answers.

Case 2: All orbits are infinite.

Since the orbits Opaq and Opa ´ 1q differ by finitely many terms for all a P Z, each two
orbits Opaq and Opbq have infinitely many common terms for arbitrary a, b P Z.

For a minute, fix any a, b P Z. We claim that all pairs pn,mq of nonnegative integers such
that fnpaq “ fmpbq have the same difference n´m. Arguing indirectly, we have fnpaq “ fmpbq
and f ppaq “ f qpbq with, say, n ´ m ą p ´ q, then f p`m`kpbq “ f p`n`kpaq “ f q`n`kpbq, for all
nonnegative integers k. This means that f ℓ`pn´mq´pp´qqpbq “ f ℓpbq for all sufficiently large ℓ,
i.e., that the sequence

`

fnpbq
˘

is eventually periodic, so Opbq is finite, which is impossible.

Now, for every a, b P Z, denote the common difference n ´ m defined above by Xpa, bq.
We have Xpa ´ 1, aq “ 1 by (1). Trivially, Xpa, bq ` Xpb, cq “ Xpa, cq, as if fnpaq “ fmpbq
and f ppbq “ f qpcq, then f p`npaq “ f p`mpbq “ f q`mpcq. These two properties imply that
Xpa, bq “ b´ a for all a, b P Z.
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But (1) yields fa2`1pfpa´ 1qq “ fa2pfpaqq, so

1 “ X
`

fpa´ 1q, fpaq
˘

“ fpaq ´ fpa´ 1q for all a P Z.

Recalling that fp´1q “ 0, we conclude by (two-sided) induction on x that fpxq “ x` 1 for all
x P Z.

Finally, the obtained function also satisfies the assumption. Indeed, fnpxq “ x ` n for all
n ě 0, so

fa2`b2pa` bq “ a` b ` a2 ` b2 “ afpaq ` bfpbq.

Comment. There are many possible variations of the solution above, but it seems that finiteness of
orbits seems to be a crucial distinction in all solutions. However, the case distinction could be made
in different ways; in particular, there exist some versions of Case 1 which work whenever there is at
least one finite orbit.

We believe that Case 2 is conceptually harder than Case 1.
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A7. Let n and k be positive integers. Prove that for a1, . . . , an P r1, 2ks one has
n
ÿ

i“1

ai
a

a21 ` . . .` a2i
ď 4

?
kn.

(Iran)

Solution 1. Partition the set of indices t1, 2, . . . , nu into disjoint subsets M1,M2, . . . ,Mk so
that aℓ P r2j´1, 2js for ℓ P Mj . Then, if |Mj | “: pj , we have

ÿ

ℓPMj

aℓ
a

a21 ` . . .` a2ℓ
ď

pj
ÿ

i“1

2j

2j´1
?
i

“ 2

pj
ÿ

i“1

1?
i
,

where we used that aℓ ď 2j and in the denominator every index from Mj contributes at least

p2j´1q2. Now, using
?
i ´

?
i´ 1 “ 1?

i`
?
i´1

ě 1

2
?
i
, we deduce that

ÿ

ℓPMj

aℓ
a

a21 ` . . .` a2ℓ
ď 2

pj
ÿ

i“1

1?
i

ď 2

pj
ÿ

i“1

2p
?
i´

?
i´ 1q “ 4

?
pj.

Therefore, summing over j “ 1, . . . , k and using the QM–AM inequality, we obtain

n
ÿ

ℓ“1

aℓ
a

a21 ` . . .` a2ℓ
ď 4

k
ÿ

j“1

b

|Mj | ď 4

g

f

f

ek

k
ÿ

j“1

|Mj | “ 4
?
kn.

Comment. Consider the function fpa1, . . . , anq “
řn

i“1
ai?

a2
1

`...`a2i
. One can see that rearranging the

variables in increasing order can only increase the value of fpa1, . . . , anq. Indeed, if aj ą aj`1 for some
index j then we have

fpa1, . . . , aj´1, aj`1, aj , aj`2, . . . , anq ´ fpa1, . . . , anq “ a

S
` b?

S2 ´ a2
´ b

S
´ a?

S2 ´ b2

where a “ aj, b “ aj`1, and S “
b

a21 ` . . . ` a2j`1. The positivity of the last expression above follows

from

b?
S2 ´ a2

´ b

S
“ a2b

S
?
S2 ´ a2 ¨ pS `

?
S2 ´ a2q

ą ab2

S
?
S2 ´ b2 ¨ pS `

?
S2 ´ b2q

“ a?
S2 ´ b2

´ a

S
.

Comment. If k ă n, the example am :“ 2kpm´1q{n shows that the problem statement is sharp up to
a multiplicative constant. For k ě n the trivial upper bound n becomes sharp up to a multiplicative
constant.

Solution 2. Apply induction on n. The base n ď 16 is clear: our sum does not exceed
n ď 4

?
nk. For the inductive step from 1, . . . , n´ 1 to n ě 17 consider two similar cases.

Case 1: n “ 2t.

Let xℓ “ aℓ?
a2
1

`...`a2
ℓ

. We have

expp´x2t`1 ´ . . .´ x22tq ě
`

1 ´ x2t`1

˘

. . .
`

1 ´ x22t
˘

“ a21 ` . . .` a2t
a21 ` . . .` a22t

ě 1

1 ` 4k
,

where we used that the product is telescopic and then an estimate at`i ď 2kai for i “ 1, . . . , t.
Therefore, x2t`1 ` . . .` x22t ď logp4k ` 1q ď 2k, where log denotes the natural logarithm. This

implies xt`1 ` . . .` x2t ď
?
2kt. Hence, using the inductive hypothesis for n “ t we get

2t
ÿ

ℓ“1

xℓ ď 4
?
kt `

?
2kt ď 4

?
2kt.
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Case 2: n “ 2t` 1.

Analogously, we get x2t`2 ` . . .` x22t`1 ď logp4k ` 1q ď 2k and

2t`1
ÿ

ℓ“1

xℓ ď 4
a

kpt` 1q `
?
2kt ď 4

a

kp2t` 1q.

The last inequality is true for all t ě 8 since

4
?
2t` 1 ´

?
2t ě 3

?
2t “

?
18t ě

?
16t` 16 “ 4

?
t ` 1.
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A8. Let R` be the set of positive real numbers. Determine all functions f : R` Ñ R`

such that, for all positive real numbers x and y,

f
`

x ` fpxyq
˘

` y “ fpxqfpyq ` 1. p˚q

(Ukraine)

Answer: fpxq “ x ` 1.

Solution 1. A straightforward check shows that fpxq “ x ` 1 satisfies p˚q. We divide the
proof of the converse statement into a sequence of steps.

Step 1: f is injective.

Put x “ 1 in p˚q and rearrange the terms to get

y “ fp1qfpyq ` 1 ´ f
`

1 ` fpyq
˘

.

Therefore, if fpy1q “ fpy2q, then y1 “ y2.

Step 2: f is (strictly) monotone increasing.

For any fixed y P R`, the function

gpxq :“ f
`

x` fpxyq
˘

“ fpxqfpyq ` 1 ´ y

is injective by Step 1. Therefore, x1 ` fpx1yq ‰ x2 ` fpx2yq for all y, x1, x2 P R` with x1 ‰ x2.
Plugging in zi “ xiy, we arrive at

z1 ´ z2

y
‰ fpz2q ´ fpz1q, or

1

y
‰ fpz2q ´ fpz1q

z1 ´ z2

for all y, z1, z2 P R` with z1 ‰ z2. This means that the right-hand side of the rightmost relation
is always non-positive, i.e., f is monotone non-decreasing. Since f is injective, it is strictly
monotone.

Step 3: There exist constants a and b such that fpyq “ ay ` b for all y P R`.

Since f is monotone and bounded from below by 0, for each x0 ě 0, there exists a right
limit limxŒx0

fpxq ě 0. Put p “ limxŒ0 fpxq and q “ limxŒp fpxq.
Fix an arbitrary y and take the limit of p˚q as x Œ 0. We have fpxyq Œ p and hence

f
`

x` fpxyq
˘

Œ q; therefore, we obtain

q ` y “ pfpyq ` 1, or fpyq “ q ` y ´ 1

p
.

(Notice that p ‰ 0, otherwise q ` y “ 1 for all y, which is absurd.) The claim is proved.

Step 4: fpxq “ x` 1 for all x P R`.

Based on the previous step, write fpxq “ ax ` b. Putting this relation into p˚q we get

a px` axy ` bq ` b` y “ pax` bqpay ` bq ` 1,

which can be rewritten as

pa´ abqx ` p1 ´ abqy ` ab ` b´ b2 ´ 1 “ 0 for all x, y P R`.

This identity may hold only if all the coefficients are 0, i.e.,

a´ ab “ 1 ´ ab “ ab` b ´ b2 ´ 1 “ 0.

Hence, a “ b “ 1.
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Solution 2. We provide another proof that fpxq “ x` 1 is the only function satisfying p˚q.
Put a “ fp1q. Define the function φ : R` Ñ R by

φpxq “ fpxq ´ x´ 1.

Then equation p˚q reads as

φpx` fpxyqq “ fpxqfpyq ´ fpxyq ´ x´ y. (1)

Since the right-hand side of (1) is symmetric under swapping x and y, we obtain

φ
`

x ` fpxyq
˘

“ φ
`

y ` fpxyq
˘

.

In particular, substituting px, yq “ pt, 1{tq we get

φpa` tq “ φ

ˆ

a ` 1

t

˙

, t P R`. (2)

Notice that the function f is bounded from below by a positive constant. Indeed, for each
y P R`, the relation p˚q yields fpxqfpyq ą y ´ 1, hence

fpxq ą y ´ 1

fpyq for all x P R`.

If y ą 1, this provides a desired positive lower bound for fpxq.
Now, let M “ inf

xPR`

fpxq ą 0. Then, for all y P R`,

M ě y ´ 1

fpyq , or fpyq ě y ´ 1

M
. (3)

Lemma 1. The function fpxq (and hence φpxq) is bounded on any segment rp, qs, where
0 ă p ă q ă `8.

Proof. f is bounded from below by M . It remains to show that f is bounded from above
on rp, qs. Substituting y “ 1 into p˚q, we get

f
`

x ` fpxq
˘

“ afpxq. (4)

Take z P rp, qs and put s “ fpzq. By (4), we have

fpz ` sq “ as and fpz ` s ` asq “ f
`

z ` s ` fpz ` sq
˘

“ a2s.

Plugging in px, yq “
`

z, 1 ` s
z

˘

to p˚q and using (3), we obtain

fpz ` asq “ f
`

z ` fpz ` sq
˘

“ sf
´

1 ` s

z

¯

´ s

z
ě s2

Mz
´ s

z
.

Now, substituting px, yq “
`

z ` as, z
z`as

˘

to p˚q and applying the above estimate and the
estimate fpyq ě M , we obtain

a2s “ fpz ` s ` asq “ f
`

z ` as ` fpzq
˘

“ fpz ` asqf
ˆ

z

z ` as

˙

` 1 ´ z

z ` as

ě Mfpz ` asq ě s2

z
´ Ms

z
ě s2

q
´ Ms

p
.

This yields s ď q
`

M
p

` a2
˘

“: L, and f is bounded from above by L on rp, qs. l
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Applying Lemma 1 to the segment ra, a` 1s, we see that φ is bounded on it. By (2) we get
that φ is also bounded on ra` 1,`8q, and hence on ra,`8q. Put C “ maxta, 3u.
Lemma 2. For all x ě C, we have φpxq “ 0 (and hence fpxq “ x` 1).

Proof. Substituting y “ x to (1), we obtain

φ
`

x` fpx2q
˘

“ fpxq2 ´ fpx2q ´ 2x,

hence,
φ
`

x` fpx2q
˘

` φpx2q “ fpxq2 ´ px` 1q2 “ φpxq
`

fpxq ` x ` 1
˘

. (5)

Since fpxq ` x ` 1 ě C ` 1 ě 4, we obtain that

|φpxq| ď 1

4

`ˇ

ˇφ
`

x` fpx2q
˘ˇ

ˇ `
ˇ

ˇφpx2q
ˇ

ˇ

˘

. (6)

Since C ě a, there exists a finite supremum S “ sup
xěC

|φpxq|. For each x P rC,`8q, both

x ` fpx2q and x2 are greater than x; hence they also lie in rC,`8q. Therefore, taking the
supremum of the left-hand side of (6) over x P rC,`8q, we obtain S ď S{2 and hence S “ 0.
Thus, φpxq “ 0 for all x ě C. l

It remains to show that fpyq “ y ` 1 when 0 ă y ă C. For each y, choose x ą max
 

C, C
y

(

.

Then all three numbers x, xy, and x ` fpxyq are greater than C, so p˚q reads as

px ` xy ` 1q ` 1 ` y “ px ` 1qfpyq ` 1, hence fpyq “ y ` 1.

Comment 1. It may be useful to rewrite p˚q in the form

φ
`

x ` fpxyq
˘

` φpxyq “ φpxqφpyq ` xφpyq ` yφpxq ` φpxq ` φpyq.

This general identity easily implies both (1) and (5).

Comment 2. There are other ways to prove that fpxq ě x ` 1. Once one has proved this, they can
use this stronger estimate instead of (3) in the proof of Lemma 1. Nevertheless, this does not make
this proof simpler. So proving that fpxq ě x ` 1 does not seem to be a serious progress towards the
solution of the problem. In what follows, we outline one possible proof of this inequality.

First of all, we improve inequality (3) by noticing that, in fact, fpxqfpyq ě y ´ 1 ` M , and hence

fpyq ě y ´ 1

M
` 1. (7)

Now we divide the argument into two steps.

Step 1: We show that M ď 1.

Suppose that M ą 1; recall the notation a “ fp1q. Substituting y “ 1{x in p˚q, we get

fpx ` aq “ fpxqf
ˆ

1

x

˙

` 1 ´ 1

x
ě Mfpxq,

provided that x ě 1. By a straightforward induction on rpx ´ 1q{as, this yields

fpxq ě M px´1q{a. (8)

Now choose an arbitrary x0 P R` and define a sequence x0, x1, . . . by xn`1 “ xn `fpxnq ě xn `M

for all n ě 0; notice that the sequence is unbounded. On the other hand, by (4) we get

axn`1 ą afpxnq “ fpxn`1q ě M pxn`1´1q{a,

which cannot hold when xn`1 is large enough.
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Step 2: We prove that fpyq ě y ` 1 for all y P R`.

Arguing indirectly, choose y P R` such that fpyq ă y`1, and choose µ with fpyq ă µ ă y`1. Define a
sequence x0, x1, . . . by choosing a large x0 ě 1 and setting xn`1 “ xn ` fpxnyq ě xn `M for all n ě 0

(this sequence is also unbounded). If x0 is large enough, then (7) implies that
`

µ´ fpyq
˘

fpxnq ě 1´ y

for all n. Therefore,
fpxn`1q “ fpyqfpxnq ` 1 ´ y ď µfpxnq.

On the other hand, since M ď 1, inequality (7) implies that fpzq ě z, provided that z ě 1. Hence,
if x0 is large enough, we have xn`1 ě xnp1 ` yq for all n. Therefore,

x0p1 ` yqn ď xn ď fpxnq ď µnfpx0q,

which cannot hold when n is large enough.
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Combinatorics

C1. Let n be a positive integer. Find the number of permutations a1, a2, . . . , an of the
sequence 1, 2, . . . , n satisfying

a1 ď 2a2 ď 3a3 ď . . . ď nan. p˚q

(United Kingdom)

Answer: The number of such permutations is Fn`1, where Fk is the kth Fibonacci number:
F1 “ F2 “ 1, Fn`1 “ Fn ` Fn´1.

Solution 1. Denote by Pn the number of permutations that satisfy p˚q. It is easy to see that
P1 “ 1 and P2 “ 2.

Lemma 1. Let n ě 3. If a permutation a1, . . . , an satisfies p˚q then either an “ n, or an´1 “ n

and an “ n ´ 1.

Proof. Let k be the index for which ak “ n. If k “ n then we are done.
If k “ n ´ 1 then, by p˚q, we have npn ´ 1q “ pn ´ 1qan´1 ď nan, so an ě n ´ 1. Since

an ‰ an´1 “ n, the only choice for an is an “ n ´ 1.
Now suppose that k ď n ´ 2. For every k ă i ă n we have kn “ kak ď iai ă nai, so

ai ě k ` 1. Moreover, nan ě pn ´ 1qan´1 ě pn ´ 1qpk ` 1q “ nk ` pn ´ 1 ´ kq ą nk, so
an ě k ` 1. Now the n ´ k ` 1 numbers ak, ak`1, . . . , an are all greater than k; but there are
only n ´ k such values; this is not possible. l

If an “ n then a1, a2, . . . , an´1 must be a permutation of the numbers 1, . . . , n´ 1 satisfying
a1 ď 2a2 ď . . . ď pn´ 1qan´1; there are Pn´1 such permutations. The last inequality in p˚q,
pn ´ 1qan´1 ď nan “ n2, holds true automatically.

If pan´1, anq “ pn, n´ 1q, then a1, . . . , an´2 must be a permutation of 1, . . . , n´ 2 satisfying
a1 ď . . . ď pn´ 2qan´2; there are Pn´2 such permutations. The last two inequalities in p˚q hold
true automatically by pn´ 2qan´2 ď pn ´ 2q2 ă npn´ 1q “ pn ´ 1qan´1 “ nan.

Hence, the sequence pP1, P2, . . .q satisfies the recurrence relation Pn “ Pn´1`Pn´2 for n ě 3.
The first two elements are P1 “ F2 and P2 “ F3, so by a trivial induction we have Pn “ Fn`1.

Solution 2. We claim that all sought permutations are of the following kind. Split t1, 2, . . . , nu
into singletons and pairs of adjacent numbers. In each pair, swap the two numbers and keep
the singletons unchanged.

Such permutations correspond to tilings of a 1 ˆ n chessboard using dominoes and unit
squares; it is well-known that the number of such tilings is the Fibonacci number Fn`1.

The claim follows by induction from

Lemma 2. Assume that a1, . . . , an is a permutation satisfying p˚q, and k is an integer such that
1 ď k ď n and ta1, a2, . . . , ak´1u “ t1, 2, . . . , k ´ 1u. (If k “ 1, the condition is empty.) Then
either ak “ k, or ak “ k ` 1 and ak`1 “ k.

Proof. Choose t with at “ k. Since k R ta1, . . . , ak´1u, we have either t “ k or t ą k. If t “ k

then we are done, so assume t ą k.
Notice that one of the numbers among the t ´ k numbers ak, ak`1, . . . , at´1 is at least t,

because there are only t ´ k ´ 1 values between k and t. Let i be an index with k ď i ă t and
ai ě t; then kt “ tat ě iai ě it ě kt, so that all the inequalities turn into equalities, hence
i “ k and ak “ t. If t “ k ` 1, we are done.

Suppose that t ą k ` 1. Then the chain of inequalities kt “ kak ď . . . ď tat “ kt should
also turn into a chain of equalities. From this point we can find contradictions in several ways;
for example by pointing to at´1 “ kt

t´1
“ k ` k

t´1
which cannot be an integer, or considering
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the product of the numbers pk` 1qak`1, . . . , pt´ 1qat´1; the numbers ak`1, . . . , at´1 are distinct
and greater than k, so

pktqt´k´1 “ pk ` 1qak`1 ¨ pk ` 2qak`2 ¨ . . . ¨ pt´ 1qat´1 ě
`

pk ` 1qpk ` 2q ¨ . . . ¨ pt´ 1q
˘2
.

Notice that pk`iqpt´iq “ kt`ipt´k´iq ą kt for 1 ď i ă t´k. This leads to the contradiction

pktqt´k´1 ě
`

pk ` 1qpk ` 2q ¨ . . . ¨ pt ´ 1q
˘2 “

t´k´1
ź

i“1

pk ` iqpt´ iq ą pktqt´k´1.

Therefore, the case t ą k ` 1 is not possible. l
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C2. In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are
colored white. Prove that there exist 24 convex quadrilaterals Q1, . . . , Q24 whose corners are
vertices of the 100-gon, so that

• the quadrilaterals Q1, . . . , Q24 are pairwise disjoint, and

• every quadrilateral Qi has three corners of one color and one corner of the other color.

(Austria)

Solution. Call a quadrilateral skew-colored, if it has three corners of one color and one corner
of the other color. We will prove the following

Claim. If the vertices of a convex p4k ` 1q-gon P are colored black and white such that each
color is used at least k times, then there exist k pairwise disjoint skew-colored quadrilaterals
whose vertices are vertices of P . (One vertex of P remains unused.)

The problem statement follows by removing 3 arbitrary vertices of the 100-gon and applying
the Claim to the remaining 97 vertices with k “ 24.

Proof of the Claim. We prove by induction. For k “ 1 we have a pentagon with at least
one black and at least one white vertex. If the number of black vertices is even then remove
a black vertex; otherwise remove a white vertex. In the remaining quadrilateral, there are an
odd number of black and an odd number of white vertices, so the quadrilateral is skew-colored.

For the induction step, assume k ě 2. Let b and w be the numbers of black and white
vertices, respectively; then b, w ě k and b ` w “ 4k ` 1. Without loss of generality we may
assume w ě b, so k ď b ď 2k and 2k ` 1 ď w ď 3k ` 1.

We want to find four consecutive vertices such that three of them are white, the fourth one
is black. Denote the vertices by V1, V2, . . . , V4k`1 in counterclockwise order, such that V4k`1 is
black, and consider the following k groups of vertices:

pV1, V2, V3, V4q, pV5, V6, V7, V8q, . . . , pV4k´3, V4k´2, V4k´1, V4kq

In these groups there are w white and b ´ 1 black vertices. Since w ą b ´ 1, there is a group,
pVi, Vi`1, Vi`2, Vi`3q that contains more white than black vertices. If three are white and one
is black in that group, we are done. Otherwise, if Vi, Vi`1, Vi`2, Vi`3 are all white then let Vj
be the first black vertex among Vi`4, . . . , V4k`1 (recall that V4k`1 is black); then Vj´3, Vj´2 and
Vj´1 are white and Vj is black.

Now we have four consecutive vertices Vi, Vi`1, Vi`2, Vi`3 that form a skew-colored quadri-
lateral. The remaining vertices form a convex p4k ´ 3q-gon; w ´ 3 of them are white and b´ 1

are black. Since b ´ 1 ě k ´ 1 and w ´ 3 ě p2k ` 1q ´ 3 ą k ´ 1, we can apply the Claim
with k ´ 1. l

Comment. It is not true that the vertices of the 100-gon can be split into 25 skew-colored quadri-
laterals. A possible counter-example is when the vertices V1, V3, V5, . . . , V81 are black and the other
vertices, V2, V4, . . . , V80 and V82, V83, . . . , V100 are white. For having 25 skew-colored quadrilaterals,
there should be 8 containing three black vertices. But such a quadrilateral splits the other 96 vertices
into four sets in such a way that at least two sets contain odd numbers of vertices and therefore they
cannot be grouped into disjoint quadrilaterals.

odd
odd
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C3. Let n be an integer with n ě 2. On a slope of a mountain, n2 checkpoints are
marked, numbered from 1 to n2 from the bottom to the top. Each of two cable car companies,
A and B, operates k cable cars numbered from 1 to k; each cable car provides a transfer from
some checkpoint to a higher one. For each company, and for any i and j with 1 ď i ă j ď k,
the starting point of car j is higher than the starting point of car i; similarly, the finishing point
of car j is higher than the finishing point of car i. Say that two checkpoints are linked by some
company if one can start from the lower checkpoint and reach the higher one by using one or
more cars of that company (no movement on foot is allowed).

Determine the smallest k for which one can guarantee that there are two checkpoints that
are linked by each of the two companies.

(India)

Answer: k “ n2 ´ n` 1.

Solution. We start with showing that for any k ď n2 ´ n there may be no pair of checkpoints
linked by both companies. Clearly, it suffices to provide such an example for k “ n2 ´ n.

Let company A connect the pairs of checkpoints of the form pi, i` 1q, where n ∤ i. Then all
pairs of checkpoints pi, jq linked by A satisfy ri{ns “ rj{ns.

Let company B connect the pairs of the form pi, i ` nq, where 1 ď i ď n2 ´ n. Then pairs
of checkpoints pi, jq linked by B satisfy i ” j pmod nq. Clearly, no pair pi, jq satisfies both
conditions, so there is no pair linked by both companies.

Now we show that for k “ n2 ´ n ` 1 there always exist two required checkpoints. Define
an A-chain as a sequence of checkpoints a1 ă a2 ă . . . ă at such that company A connects ai
with ai`1 for all 1 ď i ď t ´ 1, but there is no A-car transferring from some checkpoint to a1
and no A-car transferring from at to any other checkpoint. Define B-chains similarly. Moving
forth and back, one easily sees that any checkpoint is included in a unique A-chain (possibly
consisting of that single checkpoint), as well as in a unique B-chain. Now, put each checkpoint
into a correspondence to the pair of the A-chain and the B-chain it belongs to.

All finishing points of A-cars are distinct, so there are n2 ´ k “ n ´ 1 checkpoints that are
not such finishing points. Each of them is a starting point of a unique A-chain, so the number of
A-chains is n´1. Similarly, the number of B-chains also equals n´1. Hence, there are pn´1q2
pairs consisting of an A- and a B-chain. Therefore, two of the n2 checkpoints correspond to
the same pair, so that they belong to the same A-chain, as well as to the same B-chain. This
means that they are linked by both companies, as required.

Comment 1. The condition that the ith car starts and finishes lower than the jth one is used only
in the “moving forth and back” argument and in the counting of starting points of the chains. In both
cases, the following weaker assumption suffices: No two cars of the same company start at the same
checkpoint, and no two such cars finish at the same checkpoint.

Thus, the problem conditions could be weakened in this way„ with no affect on the solution.

Comment 2. If the number of checkpoints were N , then the answer would be N ´
P?

N
T

` 1. The
solution above works verbatim for this generalization.



34 Saint-Petersburg — Russia, 18th–28th September 2020

C4. The Fibonacci numbers F0, F1, F2, . . . are defined inductively by F0 “ 0, F1 “ 1, and
Fn`1 “ Fn ` Fn´1 for n ě 1. Given an integer n ě 2, determine the smallest size of a set S of
integers such that for every k “ 2, 3, . . . , n there exist some x, y P S such that x´ y “ Fk.

(Croatia)

Answer: rn{2s ` 1.

Solution. First we show that if a set S Ă Z satisfies the conditions then |S| ě n
2

` 1.
Let d “ rn{2s, so n ď 2d ď n ` 1. In order to prove that |S| ě d ` 1, construct a graph

as follows. Let the vertices of the graph be the elements of S. For each 1 ď k ď d, choose two
elements x, y P S such that x´ y “ F2k´1, and add the pair px, yq to the graph as edge. (Note
that by the problem’s constraints, there must be a pair px, yq with x ´ y “ F2k´1 for every
3 ď 2k ´ 1 ď 2d ´ 1 ď n; moreover, due to F1 “ F2 we have a pair with x ´ y “ F1 as well.)
We will say that the length of the edge px, yq is |x´ y|.

We claim that the graph contains no cycle. For the sake of contradiction, suppose that
the graph contains a cycle px1, . . . , xℓq, and let the longest edge in the cycle be px1, xℓq with
length F2m`1. The other edges px1, x2q, . . . , pxℓ´1, xℓq in the cycle are shorter than F2m`1 and
distinct, their lengths form a subset of tF1, F3, . . . , F2m´1u. But this is not possible because

F2m`1 “ |xℓ ´ x1| ď
ℓ´1
ÿ

i“1

|xi`1 ´ xi| ď F1 ` F3 ` F5 ` . . .` F2m´1

“ F2 ` pF4 ´ F2q ` pF6 ´ F4q ` . . .` pF2m ´ F2m´2q “ F2m ă F2m`1.

Hence, the graph has d edges and cannot contain a cycle, therefore it must contain at least
d ` 1 vertices, so |S| ě d ` 1.

Now we show a suitable set with d ` 1 elements. Let

S “ tF0, F2, F4, F5, . . . , F2du.

For 1 ď k ď d we have F0, F2k´2, F2k P S with differences F2k´F2k´2 “ F2k´1 and F2k´F0 “ F2k,
so each of F1, F2, . . . , F2d occurs as difference between two elements in S. So this set containing
d ` 1 numbers is suitable.
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C5. Let p be an odd prime, and put N “ 1
4
pp3 ´ pq ´ 1. The numbers 1, 2, . . . , N are

painted arbitrarily in two colors, red and blue. For any positive integer n ď N , denote by rpnq
the fraction of integers in t1, 2, . . . , nu that are red.

Prove that there exists a positive integer a P t1, 2, . . . , p ´ 1u such that rpnq ‰ a{p for all
n “ 1, 2, . . . , N .

(Netherlands)

Solution. Denote by Rpnq the number of red numbers in t1, 2, . . . , nu, i.e., Rpnq “ nrpnq.
Similarly, denote by Bpnq and bpnq “ Bpnq{n the number and proportion of blue numbers
in t1, 2, . . . , nu, respectively. Notice that Bpnq `Rpnq “ n and bpnq ` rpnq “ 1. Therefore, the
statement of the problem does not change after swapping the colors.

Arguing indirectly, for every a P t1, 2, . . . , p ´ 1u choose some positive integer na such that
rpnaq “ a{p and, hence, Rpnaq “ ana{p. Clearly, p | na, so that na “ pma for some positive
integer ma, and Rpnaq “ ama. Without loss of generality, we assume that m1 ă mp´1, as
otherwise one may swap the colors. Notice that

ma ď N

p
ă p2 ´ 1

4
for all a “ 1, 2, . . . , p ´ 1. (1)

The solution is based on a repeated application of the following simple observation.

Claim. Assume that ma ă mb for some a, b P t1, 2, . . . , p ´ 1u. Then

mb ě a

b
ma and mb ě p ´ a

p ´ b
ma.

Proof. The first inequality follows from bmb “ Rpnbq ě Rpnaq “ ama. The second inequality is
obtained by swapping colors . l

Let q “ pp ´ 1q{2. We distinguish two cases.

Case 1: All q numbers m1, m2, . . . , mq are smaller than mp´1.

Let ma be the maximal number among m1, m2, . . . , mq; then ma ě q ě a. Applying the Claim,
we get

mp´1 ě p ´ a

p ´ pp ´ 1qma ě pp ´ qqq “ p2 ´ 1

4
,

which contradicts (1).

Case 2: There exists k ď q such that mk ą mp´1.

Choose k to be the smallest index satisfying mk ą mp´1; by our assumptions, we have 1 ă k ď
q ă p ´ 1.

Let ma be the maximal number among m1, m2, . . . , mk´1; then a ď k ´ 1 ď ma ă mp´1.
Applying the Claim, we get

mk ě p ´ 1

k
mp´1 ě p ´ 1

k
¨ p ´ a

p ´ pp ´ 1qma

ě p ´ 1

k
¨ pp ´ k ` 1qpk ´ 1q ě k ´ 1

k
¨ pp ´ 1qpp ´ qq ě 1

2
¨ p

2 ´ 1

2

which contradicts (1) again.

Comment 1. The argument in Case 2, after a slight modification of estimates at the end, applies
as soon as there exists k ă 3pp`1q

4
with ak ă ap´1. However, this argument does not seem to work if

there is no such k.
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Comment 2. If p is small enough, then one can color t1, 2, . . . , N`1u so that there exist numbers m1,
m2, . . . , mp´1 satisfying rppmaq “ a{p. For p “ 3, 5, 7, one can find colorings providing the following
sequences:

pm1,m2q “ p1, 2q, pm1,m2,m3,m4q “ p1, 2, 3, 6q, and pm1, . . . , ,m6q “ p1, 2, 3, 4, 6, 12q,

respectively.
Thus, for small values of p, the number N in the problem statement cannot be increased. However,

a careful analysis of the estimates shows that this number can be slightly increased for p ě 11.
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C6. 4n coins of weights 1, 2, 3, . . . , 4n are given. Each coin is colored in one of n colors
and there are four coins of each color. Show that all these coins can be partitioned into two
sets with the same total weight, such that each set contains two coins of each color.

(Hungary)

Solution 1. Let us pair the coins with weights summing up to 4n ` 1, resulting in the set S
of 2n pairs: t1, 4nu, t2, 4n´ 1u, . . . , t2n, 2n` 1u. It suffices to partition S into two sets, each
consisting of n pairs, such that each set contains two coins of each color.

Introduce a multi-graph G (i.e., a graph with loops and multiple edges allowed) on n vertices,
so that each vertex corresponds to a color. For each pair of coins from S, we add an edge between
the vertices corresponding to the colors of those coins. Note that each vertex has degree 4. Also,
a desired partition of the coins corresponds to a coloring of the edges of G in two colors, say
red and blue, so that each vertex has degree 2 with respect to each color (i.e., each vertex has
equal red and blue degrees).

To complete the solution, it suffices to provide such a coloring for each component G1 of G.
Since all degrees of the vertices are even, in G1 there exists an Euler circuit C (i.e., a circuit
passing through each edge of G1 exactly once). Note that the number of edges in C is even (it
equals twice the number of vertices in G1). Hence all the edges can be colored red and blue so
that any two edges adjacent in C have different colors (one may move along C and color the
edges one by one alternating red and blue colors). Thus in G1 each vertex has equal red and
blue degrees, as desired.

Comment 1. To complete Solution 1, any partition of the edges of G into circuits of even lengths
could be used. In the solution above it was done by the reference to the well-known Euler Circuit
Lemma: Let G be a connected graph with all its vertices of even degrees. Then there exists a circuit
passing through each edge of G exactly once.

Solution 2. As in Solution 1, we will show that it is possible to partition 2n pairs t1, 4nu,
t2, 4n´1u, . . . , t2n, 2n`1u into two sets, each consisting of n pairs, such that each set contains
two coins of each color.

Introduce a multi-graph (i.e., a graph with multiple edges allowed) Γ whose vertices corre-
spond to coins; thus we have 4n vertices of n colors so that there are four vertices of each color.
Connect pairs of vertices t1, 4nu, t2, 4n´ 1u, . . . , t2n, 2n` 1u by 2n black edges.

Further, for each monochromatic quadruple of vertices i, j, k, ℓ we add a pair of grey edges
forming a matching, e.g., pi, jq and pk, ℓq. In each of n colors of coins we can choose one of
three possible matchings; this results in 3n ways of constructing grey edges. Let us call each of
3n possible graphs Γ a cyclic graph. Note that in a cyclic graph Γ each vertex has both black
and grey degrees equal to 1. Hence Γ is a union of disjoint cycles, and in each cycle black and
grey edges alternate (in particular, all cycles have even lengths).

It suffices to find a cyclic graph with all its cycle lengths divisible by 4. Indeed, in this case,
for each cycle we start from some vertex, move along the cycle and recolor the black edges
either to red or to blue, alternating red and blue colors. Now blue and red edges define the
required partition, since for each monochromatic quadruple of vertices the grey edges provide
a bijection between the endpoints of red and blue edges.

Among all possible cyclic graphs, let us choose graph Γ0 having the minimal number of
components (i.e., cycles). The following claim completes the solution.

Claim. In Γ0, all cycle lengths are divisible by 4.

Proof. Assuming the contrary, choose a cycle C1 with an odd number of grey edges. For some
color c the cycle C1 contains exactly one grey edge joining two vertices i, j of color c, while the
other edge joining two vertices k, ℓ of color c lies in another cycle C2. Now delete edges pi, jq
and pk, ℓq and add edges pi, kq and pj, ℓq. By this switch we again obtain a cyclic graph Γ1

0 and
decrease the number of cycles by 1. This contradicts the choice of Γ0. l
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Comment 2. Use of an auxiliary graph and reduction to a new problem in terms of this graph is one
of the crucial steps in both solutions presented. In fact, graph G from Solution 1 could be obtained
from any graph Γ from Solution 2 by merging the vertices of the same color.
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C7. Consider any rectangular table having finitely many rows and columns, with a real
number apr, cq in the cell in row r and column c. A pair pR,Cq, where R is a set of rows and
C a set of columns, is called a saddle pair if the following two conditions are satisfied:

piq For each row r1, there is r P R such that apr, cq ě apr1, cq for all c P C;

piiq For each column c1, there is c P C such that apr, cq ď apr, c1q for all r P R.

A saddle pair pR,Cq is called a minimal pair if for each saddle pair pR1, C 1q with R1 Ď R

and C 1 Ď C, we have R1 “ R and C 1 “ C.
Prove that any two minimal pairs contain the same number of rows.

(Thailand)

Solution 1. We say that a pair pR1, C 1q of nonempty sets is a subpair of a pair pR,Cq if
R1 Ď R and C 1 Ď C. The subpair is proper if at least one of the inclusions is strict.

Let pR1, C1q and pR2, C2q be two saddle pairs with |R1| ą |R2|. We will find a saddle
subpair pR1, C 1q of pR1, C1q with |R1| ď |R2|; clearly, this implies the desired statement.

Step 1: We construct maps ρ : R1 Ñ R1 and σ : C1 Ñ C1 such that |ρpR1q| ď |R2|, and
a
`

ρpr1q, c1
˘

ě a
`

r1, σpc1q
˘

for all r1 P R1 and c1 P C1.

Since pR1, C1q is a saddle pair, for each r2 P R2 there is r1 P R1 such that apr1, c1q ě apr2, c1q
for all c1 P C1; denote one such an r1 by ρ1pr2q. Similarly, we define four functions

ρ1 : R2 Ñ R1 such that a
`

ρ1pr2q, c1
˘

ě apr2, c1q for all r2 P R2, c1 P C1;

ρ2 : R1 Ñ R2 such that a
`

ρ2pr1q, c2
˘

ě apr1, c2q for all r1 P R1, c2 P C2;

σ1 : C2 Ñ C1 such that a
`

r1, σ1pc2q
˘

ď apr1, c2q for all r1 P R1, c2 P C2;

σ2 : C1 Ñ C2 such that a
`

r2, σ2pc1q
˘

ď apr2, c1q for all r2 P R2, c1 P C1.

(1)

Set now ρ “ ρ1 ˝ ρ2 : R1 Ñ R1 and σ “ σ1 ˝ σ2 : C1 Ñ C1. We have

|ρpR1q| “ |ρ1pρ2pR1qq| ď |ρ1pR2q| ď |R2|.
Moreover, for all r1 P R1 and c1 P C1, we get

a
`

ρpr1q, c1
˘

“ a
`

ρ1pρ2pr1qq, c1
˘

ě a
`

ρ2pr1q, c1
˘

ě a
`

ρ2pr1q, σ2pc1q
˘

ě a
`

r1, σ2pc1q
˘

ě a
`

r1, σ1pσ2pc1qq
˘

“ a
`

r1, σpc1q
˘

, (2)

as desired.

Step 2: Given maps ρ and σ, we construct a proper saddle subpair pR1, C 1q of pR1, C1q.
The properties of ρ and σ yield that

a
`

ρipr1q, c1
˘

ě a
`

ρi´1pr1q, σpc1q
˘

ě . . . ě a
`

r1, σ
ipc1q

˘

,

for each positive integer i and all r1 P R1, c1 P C1.
Consider the images Ri “ ρipR1q and C i “ σipC1q. Clearly, R1 “ R0 Ě R1 Ě R2 Ě . . . and

C1 “ C0 Ě C1 Ě C2 Ě . . .. Since both chains consist of finite sets, there is an index n such
that Rn “ Rn`1 “ . . . and Cn “ Cn`1 “ . . .. Then ρnpRnq “ R2n “ Rn, so ρn restricted to Rn

is a bijection. Similarly, σn restricted to Cn is a bijection from Cn to itself. Therefore, there
exists a positive integer k such that ρnk acts identically on Rn, and σnk acts identically on Cn.

We claim now that pRn, Cnq is a saddle subpair of pR1, C1q, with |Rn| ď |R1| “ |ρpR1q| ď
|R2|, which is what we needed. To check that this is a saddle pair, take any row r1; since
pR1, C1q is a saddle pair, there exists r1 P R1 such that apr1, c1q ě apr1, c1q for all c1 P C1. Set
now r˚ “ ρnkpr1q P Rn. Then, for each c P Cn we have c “ σnkpcq and hence

apr˚, cq “ a
`

ρnkpr1q, c
˘

ě a
`

r1, σ
nkpcq

˘

“ apr1, cq ě apr1, cq,
which establishes condition piq. Condition piiq is checked similarly.
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Solution 2. Denote by R and C the set of all rows and the set of all columns of the table,
respectively. Let T denote the given table; for a set R of rows and a set C of columns, let
T rR,Cs denote the subtable obtained by intersecting rows from R and columns from C.

We say that row r1 exceeds row r2 in range of columns C (where C Ď C) and write r1 ľC r2
or r2 ĺC r1, if apr1, cq ě apr2, cq for all c P C. We say that a row r1 is equal to a row r2 in
range of columns C and write r1 ”C r2, if apr1, cq “ apr2, cq for all c P C. We introduce similar
notions, and use the same notation, for columns. Then conditions (i) and (ii) in the definition
of a saddle pair can be written as (i) for each r1 P R there exists r P R such that r ľC r

1; and
(ii) for each c1 P C there exists c P C such that c ĺR c

1.

Lemma. Suppose that pR,Cq is a minimal pair. Remove from the table several rows outside
of R and/or several columns outside of C. Then pR,Cq remains a minimal pair in the new
table.

Proof. Obviously, pR,Cq remains a saddle pair. Suppose pR1, C 1q is a proper subpair of pR,Cq.
Since pR,Cq is a saddle pair, for each row r˚ of the initial table, there is a row r P R such that
r ľC r

˚. If pR1, C 1q became saddle after deleting rows not in R and/or columns not in C, there
would be a row r1 P R1 satisfying r1 ľC1 r. Therefore, we would obtain that r1 ľC1 r˚, which is
exactly condition piq for the pair pR1, C 1q in the initial table; condition pii) is checked similarly.
Thus, pR1, C 1q was saddle in the initial table, which contradicts the hypothesis that pR,Cq was
minimal. Hence, pR,Cq remains minimal after deleting rows and/or columns. l

By the Lemma, it suffices to prove the statement of the problem in the case R “ R1YR2 and
C “ C1 YC2. Further, suppose that there exist rows that belong both to R1 and R2. Duplicate
every such row, and refer one copy of it to the set R1, and the other copy to the set R2. Then
pR1, C1q and pR2, C2q will remain minimal pairs in the new table, with the same numbers of
rows and columns, but the sets R1 and R2 will become disjoint. Similarly duplicating columns
in C1 X C2, we make C1 and C2 disjoint. Thus it is sufficient to prove the required statement
in the case R1 X R2 “ ∅ and C1 X C2 “ ∅.

The rest of the solution is devoted to the proof of the following claim including the statement
of the problem.

Claim. Suppose that pR1, C1q and pR2, C2q are minimal pairs in table T such that R2 “ R zR1

and C2 “ C z C1. Then |R1| “ |R2|, |C1| “ |C2|; moreover, there are four bijections

ρ1 : R2 Ñ R1 such that ρ1pr2q ”C1
r2 for all r2 P R2;

ρ2 : R1 Ñ R2 such that ρ2pr1q ”C2
r1 for all r1 P R1;

σ1 : C2 Ñ C1 such that σ1pc2q ”R1
c2 for all c2 P C2;

σ2 : C1 Ñ C2 such that σ2pc1q ”R2
c1 for all c1 P C1.

(3)

We prove the Claim by induction on |R| ` |C|. In the base case we have |R1| “ |R2| “
|C1| “ |C2| “ 1; let Ri “ triu and Ci “ tciu. Since pR1, C1q and pR2, C2q are saddle pairs,
we have apr1, c1q ě apr2, c1q ě apr2, c2q ě apr1, c2q ě apr1, c1q, hence, the table consists of four
equal numbers, and the statement follows.

To prove the inductive step, introduce the maps ρ1, ρ2, σ1, and σ2 as in Solution 1, see (1).
Suppose first that all four maps are surjective. Then, in fact, we have |R1| “ |R2|, |C1| “ |C2|,
and all maps are bijective. Moreover, for all r2 P R2 and c2 P C2 we have

apr2, c2q ď a
`

r2, σ
´1
2 pc2q

˘

ď a
`

ρ1pr2q, σ´1
2 pc2q

˘

ď a
`

ρ1pr2q, σ´1
1 ˝ σ´1

2 pc2q
˘

ď a
`

ρ2 ˝ ρ1pr2q, σ´1
1 ˝ σ´1

2 pc2q
˘

. (4)

Summing up, we get
ÿ

r2PR2

c2PC2

apr2, c2q ď
ÿ

r2PR2

c2PC2

a
`

ρ2 ˝ ρ1pr2q, σ´1
1 ˝ σ´1

2 pc2q
˘

.
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Since ρ1 ˝ρ2 and σ´1
1 ˝σ´1

2 are permutations of R2 and C2, respectively, this inequality is in fact
equality. Therefore, all inequalities in (4) turn into equalities, which establishes the inductive
step in this case.

It remains to show that all four maps are surjective. For the sake of contradiction, we
assume that ρ1 is not surjective. Now let R1

1 “ ρ1pR2q and C 1
1 “ σ1pC2q, and set R˚ “ R1 z R1

1

and C˚ “ C1 z C 1
1. By our assumption, R˚ ‰ ∅.

Let Q be the table obtained from T by removing the rows in R˚ and the columns in C˚;
in other words, Q “ T rR1

1 Y R2, C
1
1 Y C2s. By the definition of ρ1, for each r2 P R2 we have

ρ1pr2q ľC1
r2, so a fortiori ρ1pr2q ľC1

1
r2; moreover, ρ1pr2q P R1

1. Similarly, C 1
1 Q σ1pc2q ĺR1

1
c2

for each c2 P C2. This means that pR1
1, C

1
1q is a saddle pair in Q. Recall that pR2, C2q remains

a minimal pair in Q, due to the Lemma.
Therefore, Q admits a minimal pair pR1, C1q such that R1 Ď R1

1 and C1 Ď C 1
1. For a

minute, confine ourselves to the subtable Q “ QrR1 Y R2, C1 Y C2s. By the Lemma, the
pairs pR1, C1q and pR2, C2q are also minimal in Q. By the inductive hypothesis, we have
|R2| “ |R1| ď |R1

1| “ |ρ1pR2q| ď |R2|, so all these inequalities are in fact equalities. This
implies that R2 “ R1

2 and that ρ1 is a bijection R2 Ñ R1
1. Similarly, C1 “ C 1

1, and σ1 is a
bijection C2 Ñ C 1

1. In particular, pR1
1, C

1
1q is a minimal pair in Q.

Now, by inductive hypothesis again, we have |R1
1| “ |R2|, |C 1

1| “ |C2|, and there exist four
bijections

ρ1
1 : R2 Ñ R1

1 such that ρ1
1pr2q ”C1

1
r2 for all r2 P R2;

ρ1
2 : R

1
1 Ñ R2 such that ρ1

2pr1q ”C2
r1 for all r1 P R1

1;

σ1
1 : C2 Ñ C 1

1 such that σ1
1pc2q ”R1

1
c2 for all c2 P C2;

σ1
2 : C

1
1 Ñ C2 such that σ1

2pc1q ”R2
c1 for all c1 P C 1

1.

Notice here that σ1 and σ1
1 are two bijections C2 Ñ C 1

1 satisfying σ1
1pc2q ”R1

1
c2 ľR1

σ1pc2q for
all c2 P C2. Now, if σ1

1pc2q ‰ σ1pc2q for some c2 P C2, then we could remove column σ1
1pc2q

from C 1
1 obtaining another saddle pair

`

R1
1, C

1
1 ztσ1

1pc2qu
˘

in Q. This is impossible for a minimal
pair pR1

1, C
1
1q; hence the maps σ1 and σ1

1 coincide.

Now we are prepared to show that pR1
1, C

1
1q is a saddle pair in T , which yields a desired

contradiction (since pR1, C1q is not minimal). By symmetry, it suffices to find, for each r1 P R,
a row r1 P R1

1 such that r1 ľC1
1
r1. If r1 P R2, then we may put r1 “ ρ1pr1q; so, in the sequel we

assume r1 P R1.
There exists r2 P R2 such that r1 ĺC2

r2; set r1 “ pρ1
2q´1pr2q P R1

1 and recall that r1 ”C2

r2 ľC2
r1. Therefore, implementing the bijection σ1 “ σ1

1, for each c1 P C 1
1 we get

apr1, c1q ď a
`

r1, σ´1
1 pc1q

˘

ď a
`

r1, σ
´1
1 pc1q

˘

“ a
`

r1, σ
1
1 ˝ σ´1

1 pc1q
˘

“ a
`

r1, c1
˘

,

which shows r1 ĺC1
1
r1, as desired. The inductive step is completed.

Comment 1. For two minimal pairs pR1, C1q and pR2, C2q, Solution 2 not only proves the required
equalities |R1| “ |R2| and |C1| “ |C2|, but also shows the existence of bijections (3). In simple
words, this means that the four subtables T rR1, C1s, T rR1, C2s, T rR2, C1s, and T rR2, C2s differ only
by permuting rows/columns. Notice that the existence of such bijections immediately implies that
pR1, C2q and pR2, C1q are also minimal pairs.

This stronger claim may also be derived directly from the arguments in Solution 1, even without
the assumptions R1 X R2 “ ∅ and C1 X C2 “ ∅. Indeed, if |R1| “ |R2| and |C1| “ |C2|, then similar
arguments show that Rn “ R1, C

n “ C1, and for any r P Rn and c P Cn we have

apr, cq “ a
`

ρnkprq, c
˘

ě a
`

ρnk´1prq, σpcq
˘

ě . . . ě a
`

r, σnkpcq
˘

“ apr, cq.
This yields that all above inequalities turn into equalities. Moreover, this yields that all inequalities
in (2) turn into equalities. Hence ρ1, ρ2, σ1, and σ2 satisfy (3).

It is perhaps worth mentioning that one cannot necessarily find the maps in (3) so as to satisfy
ρ1 “ ρ´1

2 and σ1 “ σ´1
2 , as shown by the table below.
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1 0 0 1
0 1 1 0

1 0 1 0
0 1 0 1

Comment 2. One may use the following, a bit more entertaining formulation of the same problem.

On a specialized market, a finite number of products are being sold, and there are finitely many retailers
each selling all the products by some prices. Say that retailer r1 dominates retailer r2 with respect to
a set of products P if r1’s price of each p P P does not exceed r2’s price of p. Similarly, product p1
exceeds product p2 with respect to a set of retailers R, if r’s price of p1 is not less than r’s price of p2,
for each r P R.

Say that a set R of retailers and a set P of products form a saddle pair if for each retailer r1 there
is r P R dominating r1 with respect to P , and for each product p1 there is p P P exceeding p1 with
respect to R. A saddle pair pR,P q is called a minimal pair if for each saddle pair pR1, P 1q with R1 Ď R

and P 1 Ď P , we have R1 “ R and P 1 “ P .
Prove that any two minimal pairs contain the same number of retailers.
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C8. Players A and B play a game on a blackboard that initially contains 2020 copies
of the number 1. In every round, player A erases two numbers x and y from the blackboard,
and then player B writes one of the numbers x ` y and |x ´ y| on the blackboard. The game
terminates as soon as, at the end of some round, one of the following holds:

(1) one of the numbers on the blackboard is larger than the sum of all other numbers;

(2) there are only zeros on the blackboard.

Player B must then give as many cookies to player A as there are numbers on the blackboard.
Player A wants to get as many cookies as possible, whereas player B wants to give as few as
possible. Determine the number of cookies that A receives if both players play optimally.

(Austria)

Answer: 7.

Solution. For a positive integer n, we denote by S2pnq the sum of digits in its binary represen-
tation. We prove that, in fact, if a board initially contains an even number n ą 1 of ones, then
A can guarantee to obtain S2pnq, but not more, cookies. The binary representation of 2020 is
2020 “ 111111001002, so S2p2020q “ 7, and the answer follows.

A strategy for A. At any round, while possible, A chooses two equal nonzero numbers on
the board. Clearly, while A can make such choice, the game does not terminate. On the other
hand, A can follow this strategy unless the game has already terminated. Indeed, if A always
chooses two equal numbers, then each number appearing on the board is either 0 or a power of 2
with non-negative integer exponent, this can be easily proved using induction on the number
of rounds. At the moment when A is unable to follow the strategy all nonzero numbers on the
board are distinct powers of 2. If the board contains at least one such power, then the largest
of those powers is greater than the sum of the others. Otherwise there are only zeros on the
blackboard, in both cases the game terminates.

For every number on the board, define its range to be the number of ones it is obtained from.
We can prove by induction on the number of rounds that for any nonzero number k written by
B its range is k, and for any zero written by B its range is a power of 2. Thus at the end of each
round all the ranges are powers of two, and their sum is n. Since S2pa` bq ď S2paq ` S2pbq for
any positive integers a and b, the number n cannot be represented as a sum of less than S2pnq
powers of 2. Thus at the end of each round the board contains at least S2pnq numbers, while
A follows the above strategy. So A can guarantee at least S2pnq cookies for himself.

Comment. There are different proofs of the fact that the presented strategy guarantees at least S2pnq
cookies for A. For instance, one may denote by Σ the sum of numbers on the board, and by z the
number of zeros. Then the board contains at least S2pΣq ` z numbers; on the other hand, during the
game, the number S2pΣq ` z does not decrease, and its initial value is S2pnq. The claim follows.

A strategy for B. Denote s “ S2pnq.
Let x1, . . . , xk be the numbers on the board at some moment of the game after B’s turn or

at the beginning of the game. Say that a collection of k signs ε1, . . . , εk P t`1,´1u is balanced if

k
ÿ

i“1

εixi “ 0.

We say that a situation on the board is good if 2s`1 does not divide the number of balanced
collections. An appropriate strategy for B can be explained as follows: Perform a move so that
the situation remains good, while it is possible. We intend to show that in this case B will not
lose more than S2pnq cookies. For this purpose, we prove several lemmas.

For a positive integer k, denote by ν2pkq the exponent of the largest power of 2 that divides k.
Recall that, by Legendre’s formula, ν2pn!q “ n´ S2pnq for every positive integer n.
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Lemma 1. The initial situation is good.

Proof. In the initial configuration, the number of balanced collections is equal to
`

n

n{2
˘

. We have

ν2

˜

ˆ

n

n{2

˙

¸

“ ν2pn!q ´ 2ν2
`

pn{2q!
˘

“
`

n´ S2pnq
˘

´ 2
´n

2
´ S2pn{2q

¯

“ S2pnq “ s.

Hence 2s`1 does not divide the number of balanced collections, as desired. l

Lemma 2. B may play so that after each round the situation remains good.

Proof. Assume that the situation px1, . . . , xkq before a round is good, and that A erases two
numbers, xp and xq.

Let N be the number of all balanced collections, N` be the number of those having εp “ εq,
and N´ be the number of other balanced collections. Then N “ N` `N´. Now, if B replaces
xp and xq by xp ` xq, then the number of balanced collections will become N`. If B replaces
xp and xq by |xp ´ xq|, then this number will become N´. Since 2s`1 does not divide N , it
does not divide one of the summands N` and N´, hence B can reach a good situation after
the round. l

Lemma 3. Assume that the game terminates at a good situation. Then the board contains at
most s numbers.

Proof. Suppose, one of the numbers is greater than the sum of the other numbers. Then the
number of balanced collections is 0 and hence divisible by 2s`1. Therefore, the situation is not
good.

Then we have only zeros on the blackboard at the moment when the game terminates. If
there are k of them, then the number of balanced collections is 2k. Since the situation is good,
we have k ď s. l

By Lemmas 1 and 2, B may act in such way that they keep the situation good. By Lemma 3,
when the game terminates, the board contains at most s numbers. This is what we aimed to
prove.

Comment 1. If the initial situation had some odd number n ą 1 of ones on the blackboard, player A
would still get S2pnq cookies, provided that both players act optimally. The proof of this fact is similar
to the solution above, after one makes some changes in the definitions. Such changes are listed below.

Say that a collection of k signs ε1, . . . , εk P t`1,´1u is positive if

k
ÿ

i“1

εixi ą 0.

For every index i “ 1, 2, . . . , k, we denote by Ni the number of positive collections such that εi “ 1.
Finally, say that a situation on the board is good if 2s´1 does not divide at least one of the numbers Ni.
Now, a strategy for B again consists in preserving the situation good, after each round.

Comment 2. There is an easier strategy for B, allowing, in the game starting with an even number
n of ones, to lose no more than d “ tlog2pn`2qu ´1 cookies. If the binary representation of n contains
at most two zeros, then d “ S2pnq, and hence the strategy is optimal in that case. We outline this
approach below.

First of all, we can assume that A never erases zeros from the blackboard. Indeed, A may skip
such moves harmlessly, ignoring the zeros in the further process; this way, A’s win will just increase.

We say that a situation on the blackboard is pretty if the numbers on the board can be partitioned
into two groups with equal sums. Clearly, if the situation before some round is pretty, then B may
play so as to preserve this property after the round. The strategy for B is as follows:

‚ B always chooses a move that leads to a pretty situation.
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‚ If both possible moves of B lead to pretty situations, then B writes the sum of the two numbers
erased by A.

Since the situation always remains pretty, the game terminates when all numbers on the board are
zeros.

Suppose that, at the end of the game, there are m ě d` 1 “ tlog2pn` 2qu zeros on the board; then
2m ´ 1 ą n{2.

Now we analyze the whole process of the play. Let us number the zeros on the board in order
of appearance. During the play, each zero had appeared after subtracting two equal numbers. Let
n1, . . . , nm be positive integers such that the first zero appeared after subtracting n1 from n1, the
second zero appeared after subtracting n2 from n2, and so on. Since the sum of the numbers on the
blackboard never increases, we have 2n1 ` . . . ` 2nm ď n, hence

n1 ` . . . ` nm ď n{2 ă 2m ´ 1.

There are 2m subsets of the set t1, 2, . . . ,mu. For I Ď t1, 2, . . . ,mu, denote by fpIq the sum
ř

iPI ni. There are less than 2m possible values for fpIq, so there are two distinct subsets I and J with
fpIq “ fpJq. Replacing I and J with I z J and J z I, we assume that I and J are disjoint.

Let i0 be the smallest number in I YJ ; without loss of generality, i0 P I. Consider the round when
A had erased two numbers equal to ni0 , and B had put the i0

th zero instead, and the situation before

that round.
For each nonzero number z which is on the blackboard at this moment, we can keep track of it

during the further play until it enters one of the numbers ni, i ě i0, which then turn into zeros. For
every i “ i0, i0 `1, . . . ,m, we denote by Xi the collection of all numbers on the blackboard that finally
enter the first copy of ni, and by Yi the collection of those finally entering the second copy of ni. Thus,
each of Xi0 and Yi0 consists of a single number. Since A never erases zeros, the 2pm ´ i0 ` 1q defined
sets are pairwise disjoint.

Clearly, for either of the collections Xi and Yi, a signed sum of its elements equals ni, for a proper
choice of the signs. Therefore, for every i “ i0, i0 ` 1, . . . ,m one can endow numbers in Xi Y Yi with
signs so that their sum becomes any of the numbers ´2ni, 0, or 2ni. Perform such endowment so as
to get 2ni from each collection Xi Y Yi with i P I, ´2nj from each collection Xj Y Yj with j P J , and
0 from each remaining collection. The obtained signed sum of all numbers on the blackboard equals

ÿ

iPI
2ni ´

ÿ

iPJ
2ni “ 0,

and the numbers in Xi0 and Yi0 have the same (positive) sign.
This means that, at this round, B could add up the two numbers ni0 to get a pretty situation.

According to the strategy, B should have performed that, instead of subtracting the numbers. This
contradiction shows that m ď d, as desired.
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Geometry

G1. Let ABC be an isosceles triangle with BC “ CA, and let D be a point inside side
AB such that AD ă DB. Let P and Q be two points inside sides BC and CA, respectively,
such that =DPB “ =DQA “ 90˝. Let the perpendicular bisector of PQ meet line segment
CQ at E, and let the circumcircles of triangles ABC and CPQ meet again at point F , different
from C.

Suppose that P,E, F are collinear. Prove that =ACB “ 90˝.
(Luxembourg)

Solution 1. Let ℓ be the perpendicular bisector of PQ, and denote by ω the circle CFPQ.
By DP K BC and DQ K AC, the circle ω passes through D; moreover, CD is a diameter of ω.

The lines QE and PE are symmetric about ℓ, and ℓ is a symmetry axis of ω as well; it
follows that the chords CQ and FP are symmetric about ℓ, hence C and F are symmetric
about ℓ. Therefore, the perpendicular bisector of CF coincides with ℓ. Thus ℓ passes through
the circumcenter O of ABC.

Let M be the midpoint of AB. Since CM K DM , M also lies on ω. By =ACM “ =BCM ,
the chords MP and MQ of ω are equal. Then, from MP “ MQ it follows that ℓ passes
through M .

C

F

Q

D B

ℓ

M = O

ω

E
P

A

Finally, both O and M lie on lines ℓ and CM , therefore O “ M , and =ACB “ 90˝ follows.

Solution 2. Like in the first solution, we conclude that points C, P , Q, D, F and the midpoint
M of AB lie on one circle ω with diameter CD, and M lies on ℓ, the perpendicular bisector
of PQ.

Let BF and CM meet at G and let α “ =ABF . Then, since E lies on ℓ, and the
quadrilaterals FCBA and FCPQ are cyclic, we have

=CQP “ =FPQ “ =FCQ “ =FCA “ =FBA “ α.

Since points P , E, F are collinear, we have

=FEM “ =FEQ` =QEM “ 2α ` p90˝ ´ αq “ 90˝ ` α.

But =FGM “ 90˝ ` α, so FEGM is cyclic. Hence

=EGC “ =EFM “ =PFM “ =PCM.

Thus GE ‖ BC. It follows that =FAC “ =CBF “ =EGF , so FEGA is cyclic, too. Hence
=ACB “ =AFB “ =AFG “ 180˝ ´ =AMG “ 90˝, that completes the proof.
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Comment 1. The converse statement is true: if =ACB “ 90˝ then points P , E and F are collinear.
This direction is easier to prove.

Comment 2. The statement of the problem remains true if the projection P of D onto BC lies outside
line segment BC. The restriction that P lies inside line segment BC is given to reduce case-sensitivity.
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G2. Let ABCD be a convex quadrilateral. Suppose that P is a point in the interior of
ABCD such that

=PAD : =PBA : =DPA “ 1 : 2 : 3 “ =CBP : =BAP : =BPC.

The internal bisectors of angles ADP and PCB meet at a point Q inside the triangle ABP .
Prove that AQ “ BQ.

(Poland)

Solution 1. Let ϕ “ =PAD and ψ “ =CBP ; then we have =PBA “ 2ϕ, =DPA “ 3ϕ,
=BAP “ 2ψ and =BPC “ 3ψ. Let X be the point on segment AD with =XPA “ ϕ. Then

=PXD “ =PAX ` =XPA “ 2ϕ “ =DPA´ =XPA “ =DPX.

It follows that triangle DPX is isosceles with DX “ DP and therefore the internal angle
bisector of =ADP coincides with the perpendicular bisector of XP. Similarly, if Y is a point
on BC such that =BPY “ ψ, then the internal angle bisector of =PCB coincides with the
perpendicular bisector of PY . Hence, we have to prove that the perpendicular bisectors of XP ,
PY , and AB are concurrent.

D

P

O

A B

2ϕ

ϕ

2ϕ

ϕ

2ϕ

C

Y
X

2ψ

2ψ

ψ

ψ

2ψ

Notice that

=AXP “ 180˝ ´ =PXD “ 180˝ ´ 2ϕ “ 180˝ ´ =PBA.

Hence the quadrilateral AXPB is cyclic; in other words, X lies on the circumcircle of trian-
gle APB. Similarly, Y lies on the circumcircle of triangle APB. It follows that the perpen-
dicular bisectors of XP , PY , and AB all pass through the center of circle pABY PXq. This
finishes the proof.

Comment. Introduction of points X and Y seems to be the key step in the solution above. Note that
the same point X could be introduced in different ways, e.g., as the point on the ray CP beyond P

such that =PBX “ ϕ, or as a point where the circle pAPBq meets again AB. Different definitions of
X could lead to different versions of the further solution.

Solution 2. We define the angles ϕ “ =PAD, ψ “ =CBP and use =PBA “ 2ϕ, =DPA “
3ϕ, =BAP “ 2ψ and =BPC “ 3ψ again. Let O be the circumcenter of △APB.

Notice that =ADP “ 180˝ ´ =PAD ´ =DPA “ 180˝ ´ 4ϕ, which, in particular, means
that 4ϕ ă 180˝. Further, =POA “ 2=PBA “ 4ϕ “ 180˝ ´ =ADP , therefore the quadrilateral
ADPO is cyclic. By AO “ OP , it follows that =ADO “ =ODP . Thus DO is the internal
bisector of =ADP . Similarly, CO is the internal bisector of =PCB.
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Finally, O lies on the perpendicular bisector of AB as it is the circumcenter of △APB.
Therefore the three given lines in the problem statement concur at point O.
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G3. Let ABCD be a convex quadrilateral with =ABC ą 90˝, =CDA ą 90˝, and
=DAB “ =BCD. Denote by E and F the reflections of A in lines BC and CD, respectively.
Suppose that the segments AE and AF meet the line BD at K and L, respectively. Prove that
the circumcircles of triangles BEK and DFL are tangent to each other.

(Slovakia)

Solution 1. Denote by A1 the reflection of A in BD. We will show that that the quadrilaterals
A1BKE and A1DLF are cyclic, and their circumcircles are tangent to each other at point A1.

From the symmetry about line BC we have =BEK “ =BAK, while from the symmetry in
BD we have =BAK “ =BA1K. Hence =BEK “ =BA1K, which implies that the quadrilateral
A1BKE is cyclic. Similarly, the quadrilateral A1DLF is also cyclic.

D

L

F

CA′

K

E

B

A

For showing that circles A1BKE and A1DLF are tangent it suffices to prove that

=A1KB ` =A1LD “ =BA1D.

Indeed, by AK K BC, AL K CD, and again the symmetry in BD we have

=A1KB ` =A1LD “ 180˝ ´ =KA1L “ 180˝ ´ =KAL “ =BCD “ =BAD “ =BA1D,

as required.

Comment 1. The key to the solution above is introducing the point A1; then the angle calculations
can be done in many different ways.

Solution 2. Note that =KAL “ 180˝ ´ =BCD, since AK and AL are perpendicular to BC
and CD, respectively. Reflect both circles pBEKq and pDFLq in BD. Since =KEB “ =KAB
and =DFL “ =DAL, the images are the circles pKABq and pLADq, respectively; so they meet
at A. We need to prove that those two reflections are tangent at A.

For this purpose, we observe that

=AKB ` =ALD “ 180˝ ´ =KAL “ =BCD “ =BAD.

Thus, there exists a ray AP inside angle =BAD such that =BAP “ =AKB and =DAP “
=DLA. Hence the line AP is a common tangent to the circles pKABq and pLADq, as desired.

Comment 2. The statement of the problem remains true for a more general configuration, e.g., if
line BD intersect the extension of segment AE instead of the segment itself, etc. The corresponding
restrictions in the statement are given to reduce case sensitivity.
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G4. In the plane, there are n ě 6 pairwise disjoint disks D1, D2, . . . , Dn with radii
R1 ě R2 ě . . . ě Rn. For every i “ 1, 2, . . . , n, a point Pi is chosen in disk Di. Let O be an
arbitrary point in the plane. Prove that

OP1 ` OP2 ` . . .` OPn ě R6 ` R7 ` . . .` Rn.

(A disk is assumed to contain its boundary.)
(Iran)

Solution. We will make use of the following lemma.

Lemma. Let D1, . . . , D6 be disjoint disks in the plane with radii R1, . . . , R6. Let Pi be a point
in Di, and let O be an arbitrary point. Then there exist indices i and j such that OPi ě Rj .

Proof. Let Oi be the center of Di. Consider six rays OO1, . . . , OO6 (if O “ Oi, then the ray
OOi may be assumed to have an arbitrary direction). These rays partition the plane into six
angles (one of which may be non-convex) whose measures sum up to 360˝; hence one of the
angles, say =OiOOj, has measure at most 60˝. Then OiOj cannot be the unique largest side
in (possibly degenerate) triangle OOiOj , so, without loss of generality, OOi ě OiOj ě Ri `Rj .
Therefore, OPi ě OOi ´ Ri ě pRi ` Rjq ´ Ri “ Rj , as desired. l

Now we prove the required inequality by induction on n ě 5. The base case n “ 5 is trivial.
For the inductive step, apply the Lemma to the six largest disks, in order to find indices i and j
such that 1 ď i, j ď 6 and OPi ě Rj ě R6. Removing Di from the configuration and applying
the inductive hypothesis, we get

ÿ

k‰i

OPk ě
ÿ

ℓě7

Rℓ.

Adding up this inequality with OPi ě R6 we establish the inductive step.

Comment 1. It is irrelevant to the problem whether the disks contain their boundaries or not. This
condition is included for clarity reasons only. The problem statement remains true, and the solution
works verbatim, if the disks are assumed to have disjoint interiors.

Comment 2. There are several variations of the above solution. In particular, while performing
the inductive step, one may remove the disk with the largest value of OPi and apply the inductive
hypothesis to the remaining disks (the Lemma should still be applied to the six largest disks).

Comment 3. While proving the Lemma, one may reduce it to a particular case when the disks are
congruent, as follows: Choose the smallest radius r of the disks in the Lemma statement, and then
replace, for each i, the ith disk with its homothetic copy, using the homothety centered at Pi with
ratio r{Ri.

This argument shows that the Lemma is tightly connected to a circle packing problem, see, e.g.,
https://en.wikipedia.org/wiki/Circle_packing_in_a_circle. The known results on that prob-
lem provide versions of the Lemma for different numbers of disks, which lead to different inequalities
of the same kind. E.g., for 4 disks the best possible estimate in the Lemma is OPi ě p

?
2 ´ 1qRj ,

while for 13 disks it has the form OPi ě
?
5Rj . Arguing as in the above solution, one obtains the

inequalities
n
ÿ

i“1

OPi ě p
?
2 ´ 1q

n
ÿ

j“4

Rj and
n
ÿ

i“1

OPi ě
?
5

n
ÿ

j“13

Rj.

However, there are some harder arguments which allow to improve these inequalities, meaning that
the Rj with large indices may be taken with much greater factors.

https://en.wikipedia.org/wiki/Circle_packing_in_a_circle
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G5. Let ABCD be a cyclic quadrilateral with no two sides parallel. Let K, L, M , and N
be points lying on sides AB, BC, CD, and DA, respectively, such that KLMN is a rhombus
with KL ‖ AC and LM ‖ BD. Let ω1, ω2, ω3, and ω4 be the incircles of triangles ANK,
BKL, CLM , and DMN , respectively. Prove that the internal common tangents to ω1 and ω3

and the internal common tangents to ω2 and ω4 are concurrent.
(Poland)

Solution 1. Let Ii be the center of ωi, and let ri be its radius for i “ 1, 2, 3, 4. Denote by T1
and T3 the points of tangency of ω1 and ω3 with NK and LM , respectively. Suppose that the
internal common tangents to ω1 and ω3 meet at point S, which is the center of homothety h

with negative ratio (namely, with ratio ´r3

r1
) mapping ω1 to ω3. This homothety takes T1 to T3

(since the tangents to ω1 and ω3 at T1 to T3 are parallel), hence S is a point on the segment
T1T3 with T1S : ST3 “ r1 : r3.

Construct segments S1S3 ‖ KL and S2S4 ‖ LM through S with S1 P NK, S2 P KL,
S3 P LM , and S4 P MN . Note that h takes S1 to S3, hence I1S1 ‖ I3S3, and S1S : SS3 “ r1 : r3.
We will prove that S2S : SS4 “ r2 : r4 or, equivalently, KS1 : S1N “ r2 : r4. This will yield
the problem statement; indeed, applying similar arguments to the intersection point S 1 of the
internal common tangents to ω2 and ω4, we see that S 1 satisfies similar relations, and there is
a unique point inside KLMN satisfying them. Therefore, S 1 “ S.
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S
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Further, denote by IA, IB, IC , ID and rA, rB, rC , rD the incenters and inradii of trian-
gles DAB, ABC, BCD, and CDA, respectively. One can shift triangle CLM by

ÝÝÑ
LK to glue

it with triangle AKN into a quadrilateral AKC 1N similar to ABCD. In particular, this shows
that r1 : r3 “ rA : rC ; similarly, r2 : r4 “ rB : rD. Moreover, the same shift takes S3 to S1, and
it also takes I3 to the incenter I 1

3 of triangle KC 1N . Since I1S1 ‖ I3S3, the points I1, S1, I
1
3 are

collinear. Thus, in order to complete the solution, it suffices to apply the following Lemma to
quadrilateral AKC 1N .

Lemma 1. Let ABCD be a cyclic quadrilateral, and define IA, IC , rB, and rD as above. Let
IAIC meet BD at X; then BX : XD “ rB : rD.

Proof. Consider an inversion centered at X; the images under that inversion will be denoted by
primes, e.g., A1 is the image of A.

By properties of inversion, we have

=I 1
CI

1
AD

1 “ =XI 1
AD

1 “ =XDIA “ =BDA{2 “ =BCA{2 “ =ACIB .

We obtain =I 1
AI

1
CD

1 “ =CAIB likewise; therefore, △I 1
CI

1
AD

1 „ △ACIB. In the same manner,
we get △I 1

CI
1
AB

1 „ △ACID, hence the quadrilaterals I 1
CB

1I 1
AD

1 and AIDCIB are also similar.
But the diagonals AC and IBID of quadrilateral AIDCIB meet at a point Y such that IBY :



Shortlisted problems – solutions 55

Y ID “ rB : rD. By similarity, we get D1X : B1X “ rB : rD and hence BX : XD “ D1X :

B1X “ rB : rD. l

Comment 1. The solution above shows that the problem statement holds also for any parallel-

ogram KLMN whose sides are parallel to the diagonals of ABCD, as no property specific for a
rhombus has been used. This solution works equally well when two sides of quadrilateral ABCD are
parallel.

Comment 2. The problem may be reduced to Lemma 1 by using different tools, e.g., by using mass
point geometry, linear motion of K, L, M , and N , etc.

Lemma 1 itself also can be proved in different ways. We present below one alternative proof.

Proof. In the circumcircle of ABCD, let K 1, L1. M 1, and N 1 be the midpoints of arcs AB, BC,
CD, and DA containing no other vertices of ABCD, respectively. Thus, K 1 “ CIB X DIA, etc. In
the computations below, we denote by rP s the area of a polygon P . We use similarities △IABK 1 „
△IADN 1, △IBK

1L1 „ △IBAC, etc., as well as congruences △IBK
1L1 “ △BK 1L1 and △IDM

1N 1 “
△DM 1N 1 (e.g., the first congruence holds because K 1L1 is a common internal bisector of angles BK 1IB
and BL1IB).

We have

BX

DX
“ rIABICs

rIADICs “ BIA ¨ BIC ¨ sin IABIC

DIA ¨ DIC ¨ sin IADIC
“ BIA

DIA
¨ BIC

DIC
¨ sinN

1BM 1

sinK 1DL1

“ BK 1

DN 1 ¨ BL1

DM 1 ¨ sinN
1DM 1

sinK 1BL1 “ BK 1 ¨ BL1 ¨ sinK 1BL1

DN 1 ¨ DM 1 ¨ sinN 1DM 1 ¨ sin
2 N 1DM 1

sin2 K 1BL1

“ rK 1BL1s
rM 1DN 1s ¨ N

1M 12

K 1L12 “
rK 1IBL1s ¨ A1C12

K 1L12

rM 1IDN 1s ¨ A1C12

N 1M 12

“ rAIBCs
rAIDCs “ rB

rD
,

as required. l

Solution 2. This solution is based on the following general Lemma.

Lemma 2. Let E and F be distinct points, and let ωi, i “ 1, 2, 3, 4, be circles lying in
the same halfplane with respect to EF . For distinct indices i, j P t1, 2, 3, 4u, denote by O`

ij

(respectively, O´
ij) the center of homothety with positive (respectively, negative) ratio taking

ωi to ωj. Suppose that E “ O`
12 “ O`

34 and F “ O`
23 “ O`

41. Then O´
13 “ O´

24.

Proof. Applying Monge’s theorem to triples of circles ω1, ω2, ω4 and ω1, ω3, ω4, we get that both
points O´

24 and O´
13 lie on line EO´

14. Notice that this line is distinct from EF . Similarly we
obtain that both points O´

24 and O´
13 lie on FO´

34. Since the lines EO´
14 and FO´

34 are distinct,
both points coincide with the meeting point of those lines. l
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Turning back to the problem, let AB intersect CD at E and let BC intersect DA at F .
Assume, without loss of generality, that B lies on segments AE and CF . We will show that the
points E and F , and the circles ωi satisfy the conditions of Lemma 2, so the problem statement
follows. In the sequel, we use the notation of O˘

ij from the statement of Lemma 2, applied to
circles ω1, ω2, ω3, and ω4.

Using the relations △ECA „ △EBD, KN ‖ BD, and MN ‖ AC. we get

AN

ND
“ AN

AD
¨ AD
ND

“ KN

BD
¨ AC
NM

“ AC

BD
“ AE

ED
.

Therefore, by the angle bisector theorem, point N lies on the internal angle bisector of =AED.
We prove similarly that L also lies on that bisector, and that the points K and M lie on the
internal angle bisector of =AFB.

Since KLMN is a rhombus, points K and M are symmetric in line ELN . Hence, the
convex quadrilateral determined by the lines EK, EM , KL, and ML is a kite, and therefore it
has an incircle ω0. Applying Monge’s theorem to ω0, ω2, and ω3, we get that O`

23 lies on KM .
On the other hand, O`

23 lies on BC, as BC is an external common tangent to ω2 and ω3. It
follows that F “ O`

23. Similarly, E “ O`
12 “ O`

34, and F “ O`
41.

Comment 3. The reduction to Lemma 2 and the proof of Lemma 2 can be performed with the use of
different tools, e.g., by means of Menelaus theorem, by projecting harmonic quadruples, by applying
Monge’s theorem in some other ways, etc.
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G6. Let I and IA be the incenter and the A-excenter of an acute-angled triangle ABC
with AB ă AC. Let the incircle meet BC at D. The line AD meets BIA and CIA at E
and F , respectively. Prove that the circumcircles of triangles AID and IAEF are tangent to
each other.

(Slovakia)

Solution 1. Let ?pp, qq denote the directed angle between lines p and q.
The points B, C, I, and IA lie on the circle Γ with diameter IIA. Let ω and Ω denote the

circles pIAEF q and pAIDq, respectively. Let T be the second intersection point of ω and Γ.
Then T is the Miquel point of the complete quadrilateral formed by the lines BC, BIA, CIA,
and DEF , so T also lies on circle pBDEq (as well as on circle pCDF q). We claim that T is a
desired tangency point of ω and Ω.

In order to show that T lies on Ω, use cyclic quadrilaterals BDET and BIIAT to write

?pDT,DAq “ ?pDT,DEq “ ?pBT,BEq “ ?pBT,BIAq “ ?pIT, IIAq “ ?pIT, IAq.

A

B C
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

E

F

T

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IA

ω

Ω

Γ

ℓ

To show that ω and Ω are tangent at T , let ℓ be the tangent to ω at T , so that ?pTIA, ℓq “
?pEIA, ET q. Using circles pBDET q and pBICIAq, we get

?pEIA, ET q “ ?pEB,ET q “ ?pDB,DT q.

Therefore,
?pTI, ℓq “ 90˝ ` ?pTIA, ℓq “ 90˝ ` ?pDB,DT q “ ?pDI,DT q,

which shows that ℓ is tangent to Ω at T .

Solution 2. We use the notation of circles Γ, ω, and Ω as in the previous solution.
Let L be the point opposite to I in circle Ω. Then =IAL “ =IDL “ 90˝, which means

that L is the foot of the external bisector of =A in triangle ABC. Let LI cross Γ again at M .
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Let T be the foot of the perpendicular from I onto IAL. Then T is the second intersection
point of Γ and Γ. We will show that T is the desired tangency point.

First, we show that T lies on circle ω. Notice that

?pLT, LMq “ ?pAT,AIq and ?pMT,MLq “ ?pMT,MIq “ ?pIAT, IAIq,

which shows that triangles TML and TIAA are similar and equioriented. So there exists a
rotational homothety τ mapping TML to TIAA.

Since ?pML,LDq “ ?pAI,ADq, we get τpBCq “ AD. Next, since

?pMB,MLq “ ?pMB,MIq “ ?pIAB, IAIq “ ?pIAE, IAAq,

we get τpBq “ E. Similarly, τpCq “ F . Since the points M , B, C, and T are concyclic, so are
their τ -images, which means that T lies on ω “ τpΓq.

A

B C
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E
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Ω

Γ

Finally, since τpLq “ A and τpBq “ E, triangles ATL and ETB are similar so that

?pAT,ALq “ ?pET,EBq “ ?pEIA, ET q.

This means that the tangents to Ω and ω at T make the same angle with the line IATL, so the
circles are indeed tangent at T .

Comment. In both solutions above, a crucial step is a guess that the desired tangency point lies on Γ.
There are several ways to recognize this helpful property.

E.g. one may perform some angle chasing to see that the tangents to Ω at L and to ω at IA are
parallel (and the circles lie on different sides of the tangents). This yields that, under the assumption
that the circles are tangent externally, the tangency point must lie on IAL. Since IL is a diameter
in Ω, this, in turn, implies that T is the projection of I onto IAL.

Another way to see the same fact is to perform a homothety centered at A and mapping I to IA
(and D to some point D1). The image Ω1 of Ω is tangent to ω at IA, because =BIAA`=CIAD

1 “ 180˝.
This yields that the tangents to Ω at I and to ω at IA are parallel.

There are other ways to describe the tangency point. The next solution presents one of them.
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Solution 3. We also use the notation of circles ω, and Ω from the previous solutions.

Perform an inversion centered at D. The images of the points will be denoted by primes,
e.g., A1 is the image of A.

For convenience, we use the notation =BID “ β, =CID “ γ, and α “ 180˝ ´ β ´ γ “
90˝ ´ =BAI. We start with computing angles appearing after inversion. We get

=DB1I 1 “ β, =DC 1I 1 “ γ, and hence =B1I 1C 1 “ α;

=E 1I 1
AF

1 “ =E 1I 1
AD ´ =F 1I 1

AD “ =IAED ´ =IAFD “ =EIAF “ 180˝ ´ α.

Next, we have

=A1E 1B1 “ =DE 1B1 “ =DBE “ β “ 90˝ ´ =DBA

2
“ 90˝ ´ =E 1A1B1

2
,

which yields that triangle A1B1E 1 is isosceles with A1B1 “ A1E 1. Similarly, A1F 1 “ A1C 1.
Finally, we get

=A1B1I 1 “ =I 1B1D ´ =A1B1D “ β ´ =BAD “ β ´ p90˝ ´ αq ` =IAD

“ =ICD ` =IAD “ =C 1I 1D ` =A1I 1D “ =C 1I 1A1;

similarly, =A1C 1I 1 “ =A1I 1B1, so that triangles A1B1I 1 and A1I 1C 1 are similar. Therefore,
A1I 12 “ A1B1 ¨A1C 1.

Recall that we need to prove the tangency of line A1I 1 “ Ω1 with circle pE 1F 1I 1
Aq “ ω1. A

desired tangency point T 1 must satisfy A1T 12 “ A1E 1 ¨A1F 1; the relations obtained above yield

A1E 1 ¨A1F 1 “ A1B1 ¨A1C 1 “ A1I 12,

so that T 1 should be symmetric to I 1 with respect to A1.
Thus, let us define a point T 1 as the reflection of I 1 in A1, and show that T 1 lies on circle Ω1;

the equalities above will then imply that A1T 1 is tangent to Ω1, as desired.

β γ
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The property that triangles B1A1I 1 and I 1A1C 1 are similar means that quadrilateral B1I 1C 1T 1

is harmonic. Indeed, let C˚ be the reflection of C 1 in the perpendicular bisector of I 1T 1; then
C˚ lies on B1A1 by =B1A1I 1 “ =A1I 1C 1 “ =T 1I 1C˚, and then C˚ lies on circle pI 1B1T 1q since
A1B1 ¨ A1C˚ “ A1B1 ¨ A1C 1 “ A1I 12 “ A1I 1 ¨ A1T 1. Therefore, C 1 also lies on that circle (and
the circle is pB1I 1C 1q “ Γ1). Moreover, B1C˚ is a median in triangle B1I 1T 1, so B1C 1 is its
symmedian, which establishes harmonicity.

Now we have =A1B1T 1 “ =I 1B1C 1 “ β “ =A1B1E 1; which shows that E 1 lies on B1T 1.
Similarly, F 1 lies on C 1T 1. Hence, =E 1T 1F 1 “ =B1I 1C 1 “ 180˝ ´ =E 1I 1

AF
1, which establishes

T 1 P ω1.
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Comment 2. The solution above could be finished without use of harmonicity. E.g., one may notice
that both triangles A1T 1F 1 and A1E1T 1 are similar to triangle B1I 1J , where J is the point symmetric to I 1

in the perpendicular bisector of B1C 1; indeed, we have =T 1A1E1 “ γ ´ β “ =I 1B1J 1 and B1I 1

B1J 1 “ B1I 1

C1I 1 “
B1A1

A1I 1 “ A1E1

A1T 1 . This also allows to compute =E1T 1F 1 “ =E1T 1A1 ´ =F 1T 1A1 “ =I 1JB1 ´ =JI 1B1 “ α.

Comment 3. Here we list several properties of the configuration in the problem, which can be derived
from the solutions above.

The quadrilateral IBTC (as well as I 1B1T 1C 1) is harmonic. Hence, line IT contains the meeting
point of tangents to Γ at B and C, i.e., the midpoint N of arc BAC in the circumcircle of △ABC.
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G7. Let P be a point on the circumcircle of an acute-angled triangle ABC. Let D,
E, and F be the reflections of P in the midlines of triangle ABC parallel to BC, CA, and AB,
respectively. Denote by ωA, ωB, and ωC the circumcircles of triangles ADP , BEP , and CFP ,
respectively. Denote by ω the circumcircle of the triangle formed by the perpendicular bisectors
of segments AD, BE and CF .

Show that ωA, ωB, ωC , and ω have a common point.
(Denmark)

Solution. Let AA1, BB1, and CC1 be the altitudes in triangle ABC, and let mA, mB, and mC

be the midlines parallel to BC, CA, and AB, respectively. We always denote by ?pp, qq the
directed angle from a line p to a line q, taken modulo 180˝.

Step 1: Circles ωA, ωB, and ωC share a common point Q different from P .

Notice that mA is the perpendicular bisector of PD, so ωA is symmetric with respect to mA.
Since A and A1 are also symmetric to each other in mA, the point A1 lies on ωA. Similarly, B1

and C1 lie on ωB and ωC , respectively.
Let H be the orthocenter of △ABC. Quadrilaterals ABA1B1 and BCB1C1 are cyclic, so

AH ¨ HA1 “ BH ¨ HB1 “ CH ¨ HC1. This means that H lies on pairwise radical axes of ωA,
ωB, and ωC . Point P also lies on those radical axes; hence the three circles have a common
radical axis ℓ “ PH , and the second meeting point Q of ℓ with ωA is the second common point
of the three circles. Notice here that H lies inside all three circles, hence Q ‰ P .
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Step 2: Point Q lies on ω.

Let pA, pB, and pC denote the perpendicular bisectors of AD, BE, and CF , respectively;
denote by ∆ the triangle formed by those perpendicular bisectors. By Simson’s theorem, in
order to show that Q lies on the circumcircle ω of ∆, it suffices to prove that the projections
of Q onto the sidelines pA, pB, and pC are collinear. Alternatively, but equivalently, it suffices
to prove that the reflections QA, QB, and QC of Q in those lines, respectively, are collinear. In
fact, we will show that four points P , QA, QB, and QC are collinear.

Since pA is the common perpendicular bisector of AD and QQA, the point QA lies on ωA,
and, moreover, ?pDA,DQAq “ ?pAQ,ADq. Therefore,

?pPA, PQAq “ ?pDA,DQAq “ ?pAQ,ADq “ ?pPQ, PDq “ ?pPQ,BCq ` 90˝.
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Similarly, we get ?pPB, PQBq “ ?pPQ,CAq ` 90˝. Therefore,

?pPQA, PQBq “ ?pPQA, PAq ` ?pPA, PBq ` ?pPB, PQBq
“ ?pBC, PQq ` 90˝ ` ?pCA,CBq ` ?pPQ,CAq ` 90˝ “ 0,

which shows that P , QA, and QB are collinear. Similarly, QC also lies on PQA.

Comment 1. There are several variations of Step 2. In particular, let OA, OB , and OC denote
the centers of ωA, ωB , and ωC , respectively; they lie on pA, pB, and pC , respectively. Moreover,
all those centers lie on the perpendicular bisector p of PQ. Now one can show that ?pQOA, pAq “
?pQOB , pBq “ ?pQOC , pCq, and then finish by applying generalized Simson’s theorem, Alternatively,
but equivalently, those relations show that Q is the Miquel point of the lines pA, pB, pC , and p.

To establish ?pQOA, pAq “ ?pQOC , pCq, notice that it is equivalent to ?pQOA, QOCq “ ?ppA, pCq
which may be obtained, e.g., as follows:

?pQOA, QOCq “ ?pQOA, pq ` ?pp,QOCq “ ?pAQ,AP q ` ?pCP,CQq
“ ?pAQ,CQq ` ?pCP,AP q “ ?pAQ,PQq ` ?pPQ,CQq ` ?pCB,ABq

“ ?pAD,AA1q ` ?pCC1, CF q ` ?pAA1, CC1q “ ?pAD,CF q “ ?ppA, pCq.
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Comment 2. The inversion at H with (negative) power ´AH ¨HA1 maps P to Q, and the circumcircle
of △ABC to its Euler circle. Therefore, Q lies on that Euler circle.
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G8. Let Γ and I be the circumcircle and the incenter of an acute-angled triangle ABC.
Two circles ωB and ωC passing through B and C, respectively, are tangent at I. Let ωB meet
the shorter arc AB of Γ and segment AB again at P and M , respectively. Similarly, let ωC

meet the shorter arc AC of Γ and segment AC again at Q and N , respectively. The rays PM
and QN meet at X, and the tangents to ωB and ωC at B and C, respectively, meet at Y .

Prove that the points A, X, and Y are collinear.
(Netherlands)

Solution 1. Let AI, BI, and CI meet Γ again at D, E, and F , respectively. Let ℓ be the
common tangent to ωB and ωC at I. We always denote by ?pp, qq the directed angle from a
line p to a line q, taken modulo 180˝.

Step 1: We show that Y lies on Γ.

Recall that any chord of a circle makes complementary directed angles with the tangents to the
circle at its endpoints. Hence,

?pBY,BIq ` ?pCI, CY q “ ?pIB, ℓq ` ?pℓ, ICq “ ?pIB, ICq.

Therefore,

?pBY,BAq ` ?pCA,CY q “ ?pBI,BAq ` ?pBY,BIq ` ?pCI, CY q ` ?pCA,CIq
“ ?pBC,BIq ` ?pIB, ICq ` ?pCI, CBq “ 0,

which yields Y P Γ.
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Step 2: We show that X “ ℓ X EF .

Let X˚ “ ℓ X EF . To prove our claim, it suffices to show that X˚ lies on both PM and QN ;
this will yield X˚ “ X. Due to symmetry, it suffices to show X˚ P QN .

Notice that

?pIX˚, IQq “ ?pCI, CQq “ ?pCF,CQq “ ?pEF,EQq “ ?pEX˚, EQq;
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therefore, the points X˚, I, Q, and E are concyclic (if Q “ E, then the direction of EQ is
supposed to be the direction of a tangent to Γ at Q; in this case, the equality means that the
circle pX˚IQq is tangent to Γ at Q). Then we have

?pQX˚, QIq “ ?pEX˚, EIq “ ?pEF,EBq “ ?pCA,CF q “ ?pCN,CIq “ ?pQN,QIq,

which shows that X˚ P QN .

Step 3: We finally show that A, X, and Y are collinear.

Recall that I is the orthocenter of triangle DEF , and A is symmetric to I with respect to EF .
Therefore,

?pAX,AEq “ ?pIE, IXq “ ?pBI, ℓq “ ?pBY,BIq “ ?pBY,BEq “ ?pAY,AEq,

which yields the desired collinearity.

Comment 1. Step 2 in the above solution seems to be crucial. After it has been performed (even
without Step 1), there are different ways of finishing the solution.

E.g., one may involve the notion of isogonal conjugacy. Let X1 and Y1 be isogonal conjugates of X
and Y , respectively, with respect to triangle ABC. Since XA “ XI, triangle AIX is isosceles, and
hence the lines AX and XI form equal angles with the internal bisector AI of =BAC. This means
that AX1 ‖ XI, or AX1 ‖ ℓ.

On the other hand, the lines BY and ℓ form equal angles with BI, so that BY1 ‖ ℓ. Similarly,
CY1 ‖ ℓ. This means that Y1 is an ideal point, and AY1 ‖ ℓ as well. Therefore, points A, X1, and Y1

are collinear, and hence A, X, and Y are such.

Solution 2. Perform an inversion centered at I; the images of the points are denoted by
primes, e.g., A1 is the image of A.

On the inverted figure, I and Γ1 are the orthocenter and the circumcircle of triangle A1B1C 1,
respectively. The points P 1 and Q1 lie on Γ1 such that B1P 1 ‖ C 1Q1 (since B1P 1 “ ω1

B and
C 1Q1 “ ω1

C). The points M 1 and N 1 are the second intersections of lines B1P 1 and C 1Q1 with
the circumcircles γB and γC of triangles A1IB1 and A1IC 1, respectively. Notice here that γC is

obtained from γB by the translation at
ÝÝÑ
B1C 1; the same translation maps line B1P 1 to C 1Q1, and

hence M 1 to N 1. In other words, B1M 1N 1C 1 is a parallelogram, and P 1Q1 partitions it into two
isosceles trapezoids.

Point X 1 is the second intersection point of circles pIP 1M 1q and pIQ1N 1q that is — the
reflection of I in their line of centers. But the centers lie on the common perpendicular bisector p
of P 1M 1 andQ1N 1, so p is that line of centers. Hence, IX 1 ‖ B1P 1, as both lines are perpendicular
to p.

Finally, the point Y satisfies ?pBY,BIq “ ?pPB, PIq and ?pCY,CIq “ ?pQC,QIq, which
yields ?pY 1B1, Y 1Iq “ ?pB1P 1, B1Iq and ?pY 1C 1, Y 1Iq “ ?pC 1Q1, C 1Iq. Therefore,

?pY 1B1, Y 1C 1q “ ?pB1P 1, B1Iq ` ?pC 1I, C 1Q1q “ ?pC 1I, B1Iq “ ?pA1B1, A1C 1q,

which shows that Y 1 P Γ1.
In congruent circles Γ1 and γB, the chords A1P 1 and A1M 1 subtend the same angle =A1B1P 1;

therefore, A1P 1 “ A1M 1, and hence A1 P p. This yields A1X 1 “ A1I, and hence ?pIA1, IX 1q “
?pX 1I,X 1A1q.

Finally, we have

?pY 1I, Y 1A1q “ ?pY 1I, Y 1B1q ` ?pY 1B1, Y 1A1q
“ ?pB1I, B1P 1q ` ?pIA1, IB1q “ ?pIA1, B1P 1q “ ?pIA1, IX 1q “ ?pX 1I,X 1A1q,

which yields that the points A1, X 1, Y 1, and I are concyclic. This means exactly that A, X,
and Y are collinear.
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p

Γ′

γB

γC

Comment 2. An inversion at I may also help in establishing Step 2 in Solution 1. Indeed, rela-
tion A1X 1 “ A1I yields XA “ XI, so that X P EF . On the other hand, IX 1 ‖ B1P 1 yields IX ‖ ℓ,
i.e., X P ℓ.
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G9. Prove that there exists a positive constant c such that the following statement is
true:

Assume that n is an integer with n ě 2, and let S be a set of n points in the plane such
that the distance between any two distinct points in S is at least 1. Then there is a line ℓ
separating S such that the distance from any point of S to ℓ is at least cn´1{3.

(A line ℓ separates a point set S if some segment joining two points in S crosses ℓ.)
(Taiwan)

Solution. We prove that the desired statement is true with c “ 1
8
. Set δ “ 1

8
n´1{3. For any

line ℓ and any point X, let Xℓ denote the projection of X to ℓ; a similar notation applies to
sets of points.

Suppose that, for some line ℓ, the set Sℓ contains two adjacent points X and Y with
XY “ 2d. Then the line perpendicular to ℓ and passing through the midpoint of segment XY
separates S, and all points in S are at least d apart from ℓ. Thus, if d ě δ, then a desired
line has been found. For the sake of contradiction, we assume that no such points exist, in any
projection.

Choose two points A and B in S with the maximal distance M “ AB (i.e., AB is a diameter
of S); by the problem condition, M ě 1. Denote by ℓ the line AB. The set S is contained
in the intersection of two disks DA and DB of radius M centered at A and B, respectively.
Hence, the projection Sℓ is contained in the segment AB. Moreover, the points in Sℓ divide
that segment into at most n´ 1 parts, each of length less than 2δ. Therefore,

M ă n ¨ 2δ. (1)

A

B

H

DB

DA

P
Q

T

a

h

Choose a point H on segment AB with AH “ 1
2
. Let P be a strip between the lines a and h

perpendicular to AB and passing through A and H , respectively; we assume that P contains its
boundary, which consists of lines a and h. Set T “ P X S and let t “ |T |. By our assumption,
segment AH contains at least

P

1
2
: p2δq

T

points of Sℓ, which yields

t ě 1

4δ
. (2)

Notice that T is contained in Q “ P X DB. The set Q is a circular segment, and its
projection Qa is a line segment of length

2

d

M2 ´
ˆ

M ´ 1

2

˙2

ă 2
?
M.

On the other hand, for any two points X, Y P T , we have XY ě 1 and XℓYℓ ď 1
2
, so XaYa “

a

XY 2 ´ XℓY
2
ℓ ě

?
3
2

. To summarize, t points constituting Ta lie on the segment of length less

than 2
?
M , and are at least

?
3
2

apart from each other. This yields 2
?
M ą pt´ 1q

?
3
2

, or

t ă 1 ` 4
?
M?
3

ă 4
?
M, (3)
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as M ě 1.
Combining the estimates (1), (2), and (3), we finally obtain

1

4δ
ď t ă 4

?
M ă 4

?
2nδ, or 512nδ3 ą 1,

which does not hold for the chosen value of δ.

Comment 1. As the proposer mentions, the exponent ´1{3 in the problem statement is optimal. In
fact, for any n ě 2, there is a configuration S of n points in the plane such that any two points in S
are at least 1 apart, but every line ℓ separating S is at most c1n´1{3 log n apart from some point in S;
here c1 is some absolute constant.

The original proposal suggested to prove the estimate of the form cn´1{2. That version admits
much easier solutions. E.g., setting δ “ 1

16
n´1{2 and applying (1), we see that S is contained in a

disk D of radius 1
8
n1{2. On the other hand, for each point X of S, let DX be the disk of radius 1

2

centered at X; all these disks have disjoint interiors and lie within the disk concentric to D, of radius
1
16
n1{2 ` 1

2
ă 1

2
n1{2. Comparing the areas, we get

n ¨ π
4

ď π

˜

n1{2

16
` 1

2

¸2

ă πn

4
,

which is a contradiction.

The Problem Selection Committee decided to choose a harder version for the Shortlist.

Comment 2. In this comment, we discuss some versions of the solution above, which avoid concen-
trating on the diameter of S. We start with introducing some terminology suitable for those versions.

Put δ “ cn´1{3 for a certain sufficiently small positive constant c. For the sake of contradiction,
suppose that, for some set S satisfying the conditions in the problem statement, there is no separating
line which is at least δ apart from each point of S.

Let C be the convex hull of S. A line is separating if and only if it meets C (we assume that a line
passing through a point of S is always separating). Consider a strip between two parallel separating
lines a and a1 which are, say, 1

4
apart from each other. Define a slice determined by the strip as the

intersection of S with the strip. The length of the slice is the diameter of the projection of the slice
to a.

In this terminology, the arguments used in the proofs of (2) and (3) show that for any slice T of
length L, we have

1

8δ
ď |T | ď 1 ` 4?

15
L. (4)

The key idea of the solution is to apply these estimates to a peel slice, where line a does not cross
the interior of C. In the above solution, this idea was applied to one carefully chosen peel slice. Here,
we outline some different approach involving many of them. We always assume that n is sufficiently
large.

Consider a peel slice determined by lines a and a1, where a contains no interior points of C. We
orient a so that C lies to the left of a. Line a is called a supporting line of the slice, and the obtained
direction is the direction of the slice; notice that the direction determines uniquely the supporting line
and hence the slice. Fix some direction v0, and for each α P r0, 2πq denote by Tα the peel slice whose
direction is v0 rotated by α counterclockwise.

When speaking about the slice, we always assume that the figure is rotated so that its direction is
vertical from the bottom to the top; then the points in T get a natural order from the bottom to the
top. In particular, we may speak about the top half TpT q consisting of t|T |{2u topmost points in T ,
and similarly about its bottom half BpT q. By (4), each half contains at least 10 points when n is large.

Claim. Consider two angles α, β P r0, π{2s with β ´ α ě 40δ “: φ. Then all common points of Tα and
Tβ lie in TpTαq X BpTβq.
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a

a′

peel slice

slice

C
β
−
α

Pk

Pi

Tα

Tβ

ℓ

C

Proof. By symmetry, it suffices to show that all those points lie in TpTαq. Let a be the supporting
line of Tα, and let ℓ be a line perpendicular to the direction of Tβ. Let P1, . . . , Pk list all points in Tα,
numbered from the bottom to the top; by (4), we have k ě 1

8
δ´1.

Introduce the Cartesian coordinates so that the (oriented) line a is the y-axis. Let Pi be any point

in BpTαq. The difference of ordinates of Pk and Pi is at least
?
15
4

pk ´ iq ą 1
3
k, while their abscissas

differ by at most 1
4
. This easily yields that the projections of those points to ℓ are at least

k

3
sinφ ´ 1

4
ě 1

24δ
¨ 20δ ´ 1

4
ą 1

4

apart from each other, and Pk is closer to the supporting line of Tβ than Pi, so that Pi does not belong
to Tβ. l

Now, put αi “ 40δi, for i “ 0, 1, . . . ,
X

1
40
δ´1 ¨ π

2

\

, and consider the slices Tαi
. The Claim yields that

each point in S is contained in at most two such slices. Hence, the union U of those slices contains at
least

1

2
¨ 1

8δ
¨ 1

40δ
¨ π
2

“ λ

δ2

points (for some constant λ), and each point in U is at most 1
4

apart from the boundary of C.

It is not hard now to reach a contradiction with (1). E.g., for each point X P U , consider a closest
point fpXq on the boundary of C. Obviously, fpXqfpY q ě XY ´ 1

2
ě 1

2
XY for all X,Y P U . This

yields that the perimeter of C is at least µδ´2, for some constant µ, and hence the diameter of S is of
the same order.

Alternatively, one may show that the projection of U to the line at the angle of π{4 with v0 has
diameter at least µδ´2 for some constant µ.
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Number Theory

N1. Given a positive integer k, show that there exists a prime p such that one can choose
distinct integers a1, a2, . . . , ak`3 P t1, 2, . . . , p ´ 1u such that p divides aiai`1ai`2ai`3 ´ i for all
i “ 1, 2, . . . , k.

(South Africa)

Solution. First we choose distinct positive rational numbers r1, . . . , rk`3 such that

riri`1ri`2ri`3 “ i for 1 ď i ď k.

Let r1 “ x, r2 “ y, r3 “ z be some distinct primes greater than k; the remaining terms satisfy
r4 “ 1

r1r2r3
and ri`4 “ i`1

i
ri. It follows that if ri are represented as irreducible fractions, the

numerators are divisible by x for i ” 1 pmod 4q, by y for i ” 2 pmod 4q, by z for i ” 3 pmod 4q
and by none for i ” 0 pmod 4q. Notice that ri ă ri`4; thus the sequences r1 ă r5 ă r9 ă . . .,
r2 ă r6 ă r10 ă . . ., r3 ă r7 ă r11 ă . . ., r4 ă r8 ă r12 ă . . . are increasing and have no common
terms, that is, all ri are distinct.

If each ri is represented by an irreducible fraction ui

vi
, choose a prime p which divides neither

vi, 1 ď i ď k ` 1, nor vivjpri ´ rjq “ vjui ´ viuj for i ă j, and define ai by the congruence
aivi ” ui pmod pq. Since riri`1ri`2ri`3 “ i, we have

ivivi`1vi`2vi`3 “ riviri`1vi`1ri`2vi`2ri`3vi`3

“ uiui`1ui`2ui`3 ” aiviai`1vi`1ai`2vi`2ai`3vi`3 pmod pq

and therefore aiai`1ai`2ai`3 ” i pmod pq for 1 ď i ď k.
If ai ” aj pmod pq, then uivj ” aivivj ” ujvi pmod pq, a contradiction.

Comment. One can explicitly express residues bi ” a1a2 ¨ . . . ¨ ai pmod pq in terms of b1, b2, b3 and
b0 “ 1:

bi`3 “ ipi ´ 4qpi ´ 8q ¨ . . . ¨ pi ´ 4k ` 4qbr,
where i ` 3 “ 4k ` r, 0 ď r ă 4. Then the numbers ai are found from the congruences bi´1ai ” bi
pmod pq, and choosing p so that ai are not congruent modulo p is done in a way very similar to the
above solution.
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N2. For each prime p, there is a kingdom of p-Landia consisting of p islands numbered
1, 2, . . . , p. Two distinct islands numbered n and m are connected by a bridge if and only if
p divides pn2 ´ m ` 1qpm2 ´ n ` 1q. The bridges may pass over each other, but cannot cross.
Prove that for infinitely many p there are two islands in p-Landia not connected by a chain of
bridges.

(Denmark)

Solution 1. We prove that for each prime p ą 3 dividing a number of the form x2 ´ x ` 1

with integer x there are two unconnected islands in p-Landia.
For brevity’s sake, when a bridge connects the islands numbered m and n, we shall speak

simply that it connects m and n.
A bridge connects m and n if n ” m2 ` 1 pmod pq or m ” n2 ` 1 pmod pq. If m2 ` 1 ” n

pmod pq, we draw an arrow starting at m on the bridge connecting m and n. Clearly only
one arrow starts at m if m2 ` 1 ı m pmod pq, and no arrows otherwise. The total number of
bridges does not exceed the total number of arrows.

Suppose x2 ´ x ` 1 ” 0 pmod pq. We may assume that 1 ď x ď p; then there is no arrow
starting at x. Since p1´ xq2 ´ p1´ xq ` 1 “ x2 ´ x` 1, pp` 1´ xq2 ` 1 ” pp` 1´ xq pmod pq,
and there is also no arrow starting at p ` 1 ´ x. If x “ p ` 1 ´ x, that is, x “ p`1

2
, then

4px2 ´ x ` 1q “ p2 ` 3 and therefore x2 ´ x ` 1 is not divisible by p. Thus the islands x and
p ` 1 ´ x are different, and no arrows start at either of them. It follows that the total number
of bridges in p-Landia does not exceed p ´ 2.

Let 1, 2, . . . , p be the vertices of a graph Gp, where an edge connects m and n if and only if
there is a bridge between m and n. The number of vertices of Gp is p and the number of edges
is less than p´ 1. This means that the graph is not connected, which means that there are two
islands not connected by a chain of bridges.

It remains to prove that there are infinitely many primes p dividing x2´x`1 for some integer
x. Let p1, p2, . . . , pk be any finite set of such primes. The number pp1p2 ¨. . .¨pkq2´p1p2 ¨. . .¨pk`1

is greater than 1 and not divisible by any pi; therefore it has another prime divisor with the
required property.

Solution 2. One can show, by using only arithmetical methods, that for infinitely many p, the
kingdom of p-Ladia contains two islands connected to no other island, except for each other.

Let arrows between islands have the same meaning as in the previous solution. Suppose
that positive a ă p satisfies the congruence x2 ´ x ` 1 ” 0 pmod pq. We have seen in the first
solution that b “ p`1´a satisfies it too, and b ‰ a when p ą 3. It follows that ab ” ap1´aq ” 1

pmod pq. If an arrow goes from t to a, then t must satisfy the congruence t2 ` 1 ” a ” a2 ` 1

pmod pq; the only such t ‰ a is p ´ a. Similarly, the only arrow going to b goes from p ´ b. If
one of the numbers p´ a and p´ b, say, p´ a, is not at the end of any arrow, the pair a, p´ a

is not connected with the rest of the islands. This is true if at least one of the congruences
x2 ` 1 ” ´a, x2 ` 1 ” ´b has no solutions, that is, either ´a ´ 1 or ´b ´ 1 is a quadratic
non-residue modulo p.

Note that x2 ´ x ` 1 ” x2 ´ pa ` bqx ` ab ” px ´ aqpx ´ bq pmod pq. Substituting x “ ´1

we get p´1 ´ aqp´1 ´ bq ” 3 pmod pq. If 3 is a quadratic non-residue modulo p, so is one of
the numbers ´1 ´ a and ´1 ´ b.

Thus it is enough to find infinitely many primes p ą 3 dividing x2 ´ x` 1 for some integer
x and such that 3 is a quadratic non-residue modulo p.

If x2 ´ x ` 1 ” 0 pmod pq then p2x´ 1q2 ” ´3 pmod pq, that is, ´3 is a quadratic residue
modulo p, so 3 is a quadratic non-residue if and only if ´1 is also a non-residue, in other words,
p ” ´1 pmod 4q.

Similarly to the first solution, let p1, . . . , pk be primes congruent to ´1 modulo 4 and
dividing numbers of the form x2 ´ x ` 1. The number p2p1 ¨ . . . ¨ pkq2 ´ 2p1 ¨ . . . ¨ pk ` 1 is
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not divisible by any pi and is congruent to ´1 modulo 4, therefore, it has some prime divisor
p ” ´1 pmod 4q which has the required properties.
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N3. Let n be an integer with n ě 2. Does there exist a sequence pa1, . . . , anq of positive
integers with not all terms being equal such that the arithmetic mean of every two terms is
equal to the geometric mean of some (one or more) terms in this sequence?

(Estonia)

Answer: No such sequence exists.

Solution 1. Suppose that a1, . . . , an satisfy the required properties. Let d “ gcdpa1 . . . , anq.
If d ą 1 then replace the numbers a1, . . . , an by a1

d
, . . . , an

d
; all arithmetic and all geometric

means will be divided by d, so we obtain another sequence satisfying the condition. Hence,
without loss of generality, we can assume that gcdpa1 . . . , anq “ 1.

We show two numbers, am and ak such that their arithmetic mean, am`ak
2

is different from
the geometric mean of any (nonempty) subsequence of a1 . . . , an. That proves that there cannot
exist such a sequence.

Choose the index m P t1, . . . , nu such that am “ maxpa1, . . . , anq. Note that am ě 2,
because a1, . . . , an are not all equal. Let p be a prime divisor of am.

Let k P t1, . . . , nu be an index such that ak “ maxtai : p ∤ aiu. Due to gcdpa1 . . . , anq “ 1,
not all ai are divisible by p, so such a k exists. Note that am ą ak because am ě ak, p | am and
p ∤ ak.

Let b “ am`ak
2

; we will show that b cannot be the geometric mean of any subsequence
of a1, . . . , an.

Consider the geometric mean, g “ t
?
ai1 ¨ . . . ¨ ait of an arbitrary subsequence of a1, . . . , an.

If none of ai1 , . . . , ait is divisible by p, then they are not greater than ak, so

g “ t
?
ai1 ¨ . . . ¨ ait ď ak ă am ` ak

2
“ b,

and therefore g ‰ b.
Otherwise, if at least one of ai1 , . . . , ait is divisible by p, then 2g “ 2 t

?
ai1 ¨ . . . ¨ ait is either

not an integer or is divisible by p, while 2b “ am ` ak is an integer not divisible by p, so g ‰ b

again.

Solution 2. Like in the previous solution, we assume that the numbers a1, . . . , an have no
common divisor greater than 1. The arithmetic mean of any two numbers in the sequence is
half of an integer; on the other hand, it is a (some integer order) root of an integer. This
means each pair’s mean is an integer, so all terms in the sequence must be of the same parity;
hence they all are odd. Let d “ min

 

gcdpai, ajq : ai ‰ aj
(

. By reordering the sequence we can
assume that gcdpa1, a2q “ d, the sum a1 ` a2 is maximal among such pairs, and a1 ą a2.

We will show that a1`a2
2

cannot be the geometric mean of any subsequence of a1 . . . , an.

Let a1 “ xd and a2 “ yd where x, y are coprime, and suppose that there exist some
b1, . . . , bt P ta1, . . . , anu whose geometric mean is a1`a2

2
. Let di “ gcdpa1, biq for i “ 1, 2, . . . , t

and let D “ d1d2 ¨ . . . ¨ dt. Then

D “ d1d2 ¨ . . . ¨ dt | b1b2 ¨ . . . ¨ bt “
´a1 ` a2

2

¯t

“
´x ` y

2

¯t

dt.

We claim that D | dt. Consider an arbitrary prime divisor p of D. Let νppxq denote the
exponent of p in the prime factorization of x. If p | x`y

2
, then p ∤ x, y, so p is coprime with

x; hence, νppdiq ď νppa1q “ νppxdq “ νppdq for every 1 ď i ď t, therefore νppDq “ ř

i νppdiq ď
tνppdq “ νppdtq. Otherwise, if p is coprime to x`y

2
, we have νppDq ď νppdtq trivially. The claim

has been proved.
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Notice that di “ gcdpbi, a1q ě d for 1 ď i ď t: if bi ‰ a1 then this follows from the definition
of d; otherwise we have bi “ a1, so di “ a1 ě d. Hence, D “ d1 ¨ . . . ¨ dt ě dt, and the claim
forces d1 “ . . . “ dt “ d.

Finally, by a1`a2
2

ą a2 there must be some bk which is greater than a2. From a1 ą a2 ě
d “ gcdpa1, bkq it follows that a1 ‰ bk. Now the have a pair a1, bk such that gcdpa1, bkq “ d but
a1 ` bk ą a1 ` a2; that contradicts the choice of a1 and a2.

Comment. The original problem proposal contained a second question asking if there exists a non-
constant sequence pa1, . . . , anq of positive integers such that the geometric mean of every two terms is
equal the arithmetic mean of some terms.

For n ě 3 such a sequence is p4, 1, 1, . . . , 1q. The case n “ 2 can be done by the trivial estimates

minpa1, a2q ă ?
a1a2 ă a1 ` a2

2
ă maxpa1, a2q.

The Problem Selection Committee found this variant less interesting and suggests using only the
first question.
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N4. For any odd prime p and any integer n, let dppnq P t0, 1, . . . , p ´ 1u denote the
remainder when n is divided by p. We say that pa0, a1, a2, . . .q is a p-sequence, if a0 is a positive
integer coprime to p, and an`1 “ an ` dppanq for n ě 0.

(a) Do there exist infinitely many primes p for which there exist p-sequences pa0, a1, a2, . . .q and
pb0, b1, b2, . . .q such that an ą bn for infinitely many n, and bn ą an for infinitely many n?

(b) Do there exist infinitely many primes p for which there exist p-sequences pa0, a1, a2, . . .q and
pb0, b1, b2, . . .q such that a0 ă b0, but an ą bn for all n ě 1?

(United Kingdom)

Answer: Yes, for both parts.

Solution. Fix some odd prime p, and let T be the smallest positive integer such that p | 2T ´ 1;
in other words, T is the multiplicative order of 2 modulo p.

Consider any p-sequence pxnq “ px0, x1, x2, . . . q. Obviously, xn`1 ” 2xn pmod pq and there-
fore xn ” 2nx0 pmod pq. This yields xn`T ” xn pmod pq and therefore dpxn`T q “ dpxnq for all
n ě 0. It follows that the sum dpxnq ` dpxn`1q ` . . .` dpxn`T´1q does not depend on n and is
thus a function of x0 (and p) only; we shall denote this sum by Sppx0q, and extend the func-
tion Spp¨q to all (not necessarily positive) integers. Therefore, we have xn`kT “ xn ` kSppx0q
for all positive integers n and k. Clearly, Sppx0q “ Spp2tx0q for every integer t ě 0.

In both parts, we use the notation

S`
p “ Spp1q “

T´1
ÿ

i“0

dpp2iq and S´
p “ Spp´1q “

T´1
ÿ

i“0

dppp ´ 2iq.

(a) Let q ą 3 be a prime and p a prime divisor of 2q ` 1 that is greater than 3. We will show
that p is suitable for part (a). Notice that 9 ∤ 2q ` 1, so that such a p exists. Moreover, for any
two odd primes q ă r we have gcdp2q ` 1, 2r ` 1q “ 2gcdpq,rq ` 1 “ 3, thus there exist infinitely
many such primes p.

For the chosen p, we have T “ 2q. Since 2q ” ´1 pmod pq, we have S`
p “ S´

p . Now consider
the p-sequences panq and pbnq with a0 “ p ` 1 and b0 “ p ´ 1; we claim that these sequences
satisfy the required conditions. We have a0 ą b0 and a1 “ p ` 2 ă b1 “ 2p ´ 2. It follows then
that

ak¨2q “ a0 ` kS`
p ą b0 ` kS`

p “ bk¨2q and ak¨2q`1 “ a1 ` kS`
p ă b1 ` kS`

p “ bk¨2q`1

for all k “ 0, 1, . . ., as desired.

(b) Let q be an odd prime and p a prime divisor of 2q ´ 1; thus we have T “ q. We will show
that p is suitable for part (b). Notice that the numbers of the form 2q ´ 1 are pairwise coprime
(since gcdp2q ´ 1, 2r ´ 1q “ 2gcdpq,rq ´ 1 “ 1 for any two distinct primes q and r), thus there
exist infinitely many such primes p. Notice that dppxq ` dppp ´ xq “ p for all x with p ∤ x, so
that the sum S`

p ` S´
p “ pq is odd, which yields S`

p “ Spp1q ‰ Spp´1q “ S´
p .

Assume that pxnq and pynq are two p-sequences with Sppx0q ą Sppy0q but x0 ă y0. The first
condition yields that

xMq`r ´ yMq`r “ pxr ´ yrq ` M
`

Sppx0q ´ Sppy0q
˘

ě pxr ´ yrq ` M

for all nonnegative integers M and every r “ 0, 1, . . . , q ´ 1. Thus, we have xn ą yn for
every n ě q ` q ¨ max

 

yr ´ xr : r “ 0, 1, . . . , q ´ 1
(

. Now, since x0 ă y0, there exists the
largest n0 with xn0

ă yn0
. In this case the p-sequences an “ xn´n0

and bn “ yn´n0
possess

the desired property (notice here that xn ‰ yn for all n ě 0, as otherwise we would have
Sppx0q “ Sppxnq “ Sppynq “ Sppy0q).
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It remains to find p-sequences pxnq and pynq satisfying the two conditions. Recall that
S`
p ‰ S´

p . Now, if S`
p ą S´

p , then we can put x0 “ 1 and y0 “ p ´ 1. Otherwise, if S`
p ă S´

p ,
then we put x0 “ p ´ 1 and y0 “ p ` 1.
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N5. Determine all functions f defined on the set of all positive integers and taking
non-negative integer values, satisfying the three conditions:

piq fpnq ‰ 0 for at least one n;

piiq fpxyq “ fpxq ` fpyq for every positive integers x and y;

piiiq there are infinitely many positive integers n such that fpkq “ fpn´ kq for all k ă n.
(Croatia)

Answer: The sought functions are those of the form fpnq “ c ¨ νppnq, where p is some prime, c
is a nonnegative integer, and νppnq denotes the exponent of p in the prime decomposition of n.

Solution 1. If a number n is a product of primes, n “ p1p2 ¨ . . . ¨ pk, then

fpnq “ fpp1q ` . . .` fppkq,

in particular, fp1q “ 0 (since fp1q “ fp1q ` fp1q).
It is also clear that fpnq “ 0 implies fppq “ 0 for all primes p dividing n.
Let us call positive integer n good if fpkq “ fpn´ kq for 0 ă k ă n. If n is good then each

its divisor d is also good; indeed, if n “ dm then

fpkq “ fpmkq ´ fpmq “ fpn´ mkq ´ fpmq “ fpmpd ´ kqq ´ fpmq “ fpd´ kq

for 0 ă k ă d. Thus, good numbers are products of good primes.
It follows immediately from (i) that there exists a prime p such that fppq ‰ 0; let p be the

smallest such prime. Then fprq “ 0 for all r ă p (since all prime divisors of r ă p are less than
p). Now every good number n ą p must be divisible by p. Indeed, if n “ pk ` r is a good
number, k ą 0, 0 ă r ă p, then fppq ď fppkq “ fpn ´ pkq “ fprq “ 0, a contradiction. Since
any divisor of a good number is also good, this means that if a divisor r of a good number is
not divisible by p, it is less than p. Thus all good numbers have the form r ¨ pk with r ă p. The
condition (iii) implies that k can be arbitrarily large, consequently all powers of p are good.

If q ‰ p is a prime, pq´1 ´ 1 is divisible by q and pq´1 is good. Then fpqq ď fppq´1 ´ 1q “
fp1q “ 0, that is, fpqq “ 0.

Now we see that fpnq “ νppnq ¨ c, where c “ fppq. The conditions (i) and (ii) for all such
functions with c ‰ 0 are obvious; the condition (iii) holds for all n “ pm, since νpppm´kq “ νppkq
when 0 ă k ă pm.

Solution 2. We use the notion of a good number from the previous solution. As above, we
also denote by νppnq the exponent of a prime p in the prime decomposition of n.

Say that a positive integer k is big if fpkq ą 0. Let B be the set of big primes, and let
p1 ă p2 ă . . . list the elements of B (this set might be either finite or infinite). By the problem
conditions, we have

fpnq “
ÿ

i

νpipnqfppiq; (1)

thus, the big numbers are those divisible by at least one big prime.
For a positive integer k, define its essence epkq to be the largest product e of (not necessarily

different) big primes such that e | k. In other words,

epnq “
ź

piPB
p
νpipnq
i .

This yields that k{epkq is not big, so fpkq “ fpepkqq ` fpk{epkqq “ fpepkqq.
Lemma. Assume that n is a good number. Then epkq “ epn´ kq for all k ă n.
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Proof. Arguing indirectly, choose a minimal k for which the claim of the lemma is violated.
Clearly, k is big, as otherwise fpkq “ fpn´ kq “ 0 and hence epkq “ epn ´ kq “ 1.

There are t “ k{epkq multiples of epkq in each of the segments r1, ks and rn ´ k, n ´ 1s.
On the other hand, there are t´ 1 such multiples on r1, k ´ 1s — and, by minimality of k, on
rn´ k ` 1, n´ 1s as well. This yields that n´ k is a multiple of epkq. Therefore,

fpepkqq “ fpkq “ fpn´ kq “ fpepkqq ` f

ˆ

n ´ k

epkq

˙

,

so the last summand vanishes, hence n´k
epkq has no big prime divisors, that is, epn ´ kq “ epkq.

This contradicts our choice. l

Back to the problem, assume that |B| ě 2. Take any good number n ą p1p2, and let
pα1 be the largest power of p1 smaller than n, so that n ď pα`1

1 ă pα1p2. By the lemma,
epn ´ pα1 q “ eppα1 q “ pα1 , which yields pα1 | n. Similarly, p2 | n, so that n ě pα1p2. This
contradiction shows that |B| ď 1, which by (1) yields that f is listed in the answer.

Solution 3. We have fpś pαi

i q “ ř

αifppiq. Note that

fpn´ 1q ` fpn´ 2q ` . . .` . . . fpn´ kq ě fp1q ` . . .` fpkq

for all k “ 1, 2, . . . , n´1, since the difference LHS´RHS is just fp
`

n´1

k

˘

q. Assume that fppq ą 0.

If fpkq “ fpn´ kq for all k, it implies that
`

n´1

k

˘

is not divisible by p for all k “ 1, 2, . . . , n´ 2.
It is well known that it implies n “ a ¨ ps, a ă p. If there are two primes p, q such that
fppq ą 0, fpqq ą 0, there exist only finitely many n which are equal both to a ¨ ps, a ă p,
and b ¨ qt, b ă q. So there exists at most one such p, and therefore fpnq “ C ¨ νppnq for some
constant C.

Solution 4. We call a function f : N Ñ N0 satisfying piiq additive. We call a pair pf, nq,
where f is an additive function and n P N, good, if for all k ă n it holds fpkq “ fpn ´ kq. For

an additive function f and a prime number p the number fppq
ln p

is denoted by gpf, pq.
Let pf, nq be a good pair such that fppq ą 0 for at least two primes less than n. Let p0 be

the prime with maximal gpf, pq among all primes p ă n. Let a0 be the maximal exponent such
that pa00 ă n. Then fpkq ă fppa00 q for all k ă pa00 . Indeed, if k “ pa11 . . . pamm ă pa00 , then

fpkq “ a1fpp1q ` . . .` amfppmq “ gpf, p1qa1 ln p1 ` . . .` gpf, pmqam ln am

ă gpf, p0qa0 ln p0 “ fppa00 q.

Let n “ bpa00 ` r, where 0 ă r ă pa00 . Then fprq “ fpbpa00 q ě fppa00 q. This contradiction shows

that pa00 |n. Then n “ p
νp0pnq
0 n1, where n1 ď p0.

The functions f1pmq :“ fpp0qνp0pmq and f2 :“ f ´ f1 are additive (obviously fpmq ě
fppνp0pmq

0 q “ f1pmq, since p
νp0pmq
0 divides m). For k ă n, νppkq “ νppn ´ kq. Hence the pair

pf2, nq is also good. Note that f2pp0q “ 0.
Choose among all primes p ă n the prime q0 with maximal gpf2, pq. As above we can prove

that n “ q
νq0 pnq
0 n2 with n2 ă q0. Since p0 ‰ q0, we get a contradiction. Thus fpnq “ fppq ¨νppnq.
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N6. For a positive integer n, let dpnq be the number of positive divisors of n, and let
ϕpnq be the number of positive integers not exceeding n which are coprime to n. Does there
exist a constant C such that

ϕpdpnqq
dpϕpnqq ď C

for all n ě 1?
(Cyprus)

Answer: No, such constant does not exist.

Solution 1. Fix N ą 1, let p1, . . . , pk be all primes between 1 and N and pk`1, . . . , pk`s be all
primes between N ` 1 and 2N . Since for j ď k` s all prime divisors of pj ´ 1 do not exceed N ,
we have

k`s
ź

j“1

ppj ´ 1q “
k
ź

i“1

pcii ,

with some fixed exponents c1, . . . , ck. Choose a huge prime number q and consider a number

n “ pp1 ¨ . . . ¨ pkqq´1 ¨ ppk`1 ¨ . . . ¨ pk`sq.

Then

ϕpdpnqq “ ϕpqk ¨ 2sq “ qk´1pq ´ 1q2s´1

and

dpϕpnqq “ d

ˆ

pp1 ¨ . . . ¨ pkqq´2

k`s
ź

i“1

ppi ´ 1q
˙

“ d

ˆ k
ź

i“1

p
q´2`ci
i

˙

“
k
ź

i“1

pq ´ 1 ` ciq,

so
ϕpdpnqq
dpϕpnqq “ qk´1pq ´ 1q2s´1

śk

i“1pq ´ 1 ` ciq
“ 2s´1 ¨ q ´ 1

q
¨

k
ź

i“1

q

q ´ 1 ` ci
,

which can be made arbitrarily close to 2s´1 by choosing q large enough. It remains to show
that s can be arbitrarily large, i.e. that there can be arbitrarily many primes between N and
2N .

This follows, for instance, from the well-known fact that
ř

1
p

“ 8, where the sum is taken
over the set P of prime numbers. Indeed, if, for some constant C, there were always at most C
primes between 2ℓ and 2ℓ`1, we would have

ÿ

pPP

1

p
“

8
ÿ

ℓ“0

ÿ

pPP
pPr2ℓ,2ℓ`1q

1

p
ď

8
ÿ

ℓ“0

C

2ℓ
ă 8,

which is a contradiction.

Comment 1. Here we sketch several alternative elementary self-contained ways to perform the last
step of the solution above. In particular, they avoid using divergence of

ř

1
p
.

Suppose that for some constant C and for every k “ 1, 2, . . . there exist at most C prime numbers
between 2k and 2k`1. Consider the prime factorization of the factorial p2nq! “ ś

pαp . We have
αp “ t2n{pu ` t2n{p2u ` . . .. Thus, for p P r2k, 2k`1q, we get αp ď 2n{2k ` 2n{2k`1 ` . . . “ 2n´k`1,

therefore pαp ď 2pk`1q2n´k`1

. Combining this with the bound p2mq! ě mpm ` 1q ¨ . . . ¨ p2m ´ 1q ě mm

for m “ 2n´1 we get

2pn´1q¨2n´1 ď p2nq! ď
n´1
ź

k“1

2Cpk`1q2n´k`1

,



82 Saint-Petersburg — Russia, 18th–28th September 2020

or
n´1
ÿ

k“1

Cpk ` 1q21´k ě n ´ 1

2

that fails for large n since Cpk ` 1q21´k ă 1{3 for all but finitely many k.
In fact, a much stronger inequality can be obtained in an elementary way: Note that the formula

for νppn!q implies that if pα is the largest power of p dividing
`

n
n{2

˘

, then pα ď n. By looking at prime

factorization of
`

n
n{2

˘

we instantaneously infer that

πpnq ě logn

ˆ

n

n{2

˙

ě log p2n{nq
log n

ě n

2 log n
.

This, in particular, implies that for infinitely many n there are at least n
3 logn

primes between n and 2n.

Solution 2. In this solution we will use the Prime Number Theorem which states that

πpmq “ m

logm
¨ p1 ` op1qq,

as m tends to infinity. Here and below πpmq denotes the number of primes not exceeding m,
and log the natural logarithm.

Let m ą 5 be a large positive integer and let n :“ p1p2 ¨ . . . ¨ pπpmq be the product of all
primes not exceeding m. Then ϕpdpnqq “ ϕ

`

2πpmq˘ “ 2πpmq´1. Consider the number

ϕpnq “
πpmq
ź

k“1

ppk ´ 1q “
πpm{2q
ź

s“1

qαs

s ,

where q1, . . . , qπpm{2q are primes not exceeding m{2. Note that every term pk ´ 1 contributes at
most one prime qs ą ?

m into the product
ś

s q
αs
s , so we have

ÿ

s : qsą?
m

αs ď πpmq ùñ
ÿ

s : qsą?
m

p1 ` αsq ď πpmq ` πpm{2q.

Hence, applying the AM–GM inequality and the inequality pA{xqx ď eA{e, we obtain

ź

s : qsą?
m

pαs ` 1q ď
ˆ

πpmq ` πpm{2q
ℓ

˙ℓ

ď exp

ˆ

πpmq ` πpm{2q
e

˙

,

where ℓ is the number of primes in the interval p?
m,ms.

We then use a trivial bound αi ď log2 pϕpnqq ď log2 n ă log2 pmmq ă m2 for each i with
qi ă ?

m to obtain
πp?

mq
ź

s“1

pαs ` 1q ď
`

m2
˘

?
m “ m2

?
m.

Putting this together we obtain

dpϕpnqq “
πpm{2q
ź

s“1

pαs ` 1q ď exp

ˆ

2
?
m ¨ logm ` πpmq ` πpm{2q

e

˙

.

The prime number theorem then implies that

lim sup
mÑ8

log pdpϕpnqqq
m{ logm ď lim sup

mÑ8

2
?
m ¨ logm
m{ logm ` lim sup

mÑ8

πpmq ` πpm{2q
e ¨m{ logm “ 3

2e
.

Whereas, again by prime number theorem, we have

lim inf
mÑ8

log pϕpdpnqqq
m{ logm “ lim inf

mÑ8

log
`

2πpmq´1
˘

m{ logm “ log 2.

Since 3
2e

ă 3
5

ă log 2, this implies that ϕpdpnqq{dpϕpnqq can be arbitrarily large.
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Comment 2. The original formulation of the problem was asking whether dpϕpnqq ě ϕpdpnqq for all
but finitely many values of n. The Problem Selection Committee decided that the presented version
is better suited for the Shortlist.
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N7. Let S be a set consisting of n ě 3 positive integers, none of which is a sum of two
other distinct members of S. Prove that the elements of S may be ordered as a1, a2, . . . , an so
that ai does not divide ai´1 ` ai`1 for all i “ 2, 3, . . . , n´ 1.

(Ukraine)

Common remarks. In all solutions, we call a set S of positive integers good if no its element
is a sum of two other distinct members of S. We will use the following simple observation.

Observation A. If a, b, and c are three distinct elements of a good set S with b ą a, c, then
b ∤ a` c. Otherwise, since b ‰ a ` c, we would have b ď pa` cq{2 ă maxta, cu.

Solution 1. We prove the following stronger statement.

Claim. Let S be a good set consisting of n ě 2 positive integers. Then the elements of S may
be ordered as a1, a2, . . . , an so that ai ∤ ai´1 `ai`1 and ai ∤ ai´1 ´ai`1, for all i “ 2, 3, . . . , n´ 1.

Proof. Say that the ordering a1, . . . , an of S is nice if it satisfies the required property.

We proceed by induction on n. The base case n “ 2 is trivial, as there are no restrictions
on the ordering.

To perform the step of induction, suppose that n ě 3. Let a “ maxS, and set T “ S z tau.
Use the inductive hypothesis to find a nice ordering b1, . . . , bn´1 of T . We will show that a may
be inserted into this sequence so as to reach a nice ordering of S. In other words, we will show
that there exists a j P t1, 2, . . . , nu such that the ordering

Nj “ pb1, . . . , bj´1, a, bj , bj`1, . . . , bn´1q

is nice.

Assume that, for some j, the ordering Nj is not nice, so that some element x in it divides
either the sum or the difference of two adjacent ones. This did not happen in the ordering of T ,
hence x P tbj´1, a, bju (if, say, bj´1 does not exist, then x P ta, bju; a similar agreement is applied
hereafter). But the case x “ a is impossible: a cannot divide bj´1 ´ bj , since 0 ă |bj´1 ´ bj | ă a,
while a ∤ bj´1 ` bj by Observation A. Therefore x P tbj´1, bju. In this case, assign the number
x to the index j.

Suppose now that none of the Nj is nice. Since there are n possible indices j, and only n´1

elements in T , one of those elements (say, bk) is assigned to two different indices, which then
should equal k and k ` 1. This means that bk divides the numbers bk´1 ` ε1a and a ` ε2bk`1,
for some signs ε1, ε2 P t´1, 1u. But then

bk´1 ” ´ε1a ” ε1ε2bk`1 pmod bkq,

and therefore bk | bk´1 ´ ε1ε2bk`1, which means that the ordering of T was not nice. This
contradiction proves the step of induction. l

Solution 2. We again prove a stronger statement.

Claim. Let S be an arbitrary set of n ě 3 positive integers. Then its elements can be ordered
as a1, . . . , an so that, if ai | ai´1 ` ai`1, then ai “ maxS.

The claim easily implies what we need to prove, due to Observation A.

To prove the Claim, introduce the function f which assigns to any two elements a, b P S
with a ă b the unique integer fpa, bq P t1, 2, . . . , au such that a | b` fpa, bq. Hence, if b | a ` c

for some a, b, c P S with a ă b ă c, then a “ fpb, cq. Therefore, the Claim is a consequence of
the following combinatorial lemma.
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Lemma. Let S be a set of n ě 3 positive integers, and let f be a function which assigns to any
a, b P S with a ă b some integer from the range t1, . . . , au. Then the elements of S may be
ordered as a1, a2, . . . , an so as to satisfy the following two conditions simultaneously:

piq Unimodality: There exists a j P t1, 2, . . . , nu such that a1 ă a2 ă . . . ă aj ą aj`1 ą . . . ą
an; and

piiq f-avoidance: If a ă b are two elements of S, which are adjacent in the ordering, then
fpa, bq is not adjacent to a.

Proof. We call an ordering of S satisfying piq and piiq f -nice. We agree that fpx, yq “ x for
x ě y; this agreement puts no extra restriction.

We proceed by induction; for the base case n “ 3, it suffices to put the maximal element
in S onto the middle position.

To perform the step of induction, let p ă q be the two minimal elements of S, and set
T “ S z tpu. Define a function g by assigning to any elements a ă b of T the value

gpa, bq “
#

q, if fpa, bq “ p;

fpa, bq, otherwise.
(1)

Notice that gpa, bq ď a for all a, b P T .
Use the inductive hypothesis to get a g-nice ordering b1, b2, . . . , bn´1 of T . By unimodality,

either b1 or bn´1 equals q; these cases differ only by reverting the order, so we assume b1 “ q.
Notice that, according to (1), the number fpb2, b3q differs from both p and q. On the other

hand, the number fpbn´1, bn´2q differs from at least one of them — say, from r; set s “ p`q´r,
so that tr, su “ tp, qu. Now, order S as

s, b2, b3, . . . , bn´1, r.

By the induction hypothesis and the above choice, this ordering is nice. l

Comment. In the original proposal, the numbers in the set were assumed to be odd (which implies
that none is a sum of two others); moreover, the proposal requested to arrange in a row all numbers
but one.

On the other hand, Solution 2 shows that the condition of S being good may be relaxed to the
condition that the maximal element of S is not a sum of two other elements in S. On the other hand,
the set t1, 2, 3u shows that the condition cannot be merely omitted.

The Problem Selection Committee considered several versions of the problem and chose the best
version in their opinion for the Shortlist.
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